Learning Lab 6: Parallel Algorithms of Solving Differential
Equations in Partial Derivatives

Learning Lab 6: Parallel Algorithms of Solving Differential Equations in Partial Derivatives 1
= 1ol @ o] =T ot 1Y O PP PPRPTPPP 1
Exercise 1 — Stating the Dirichlet Problem............ccovviiiiiiii e 2
Exercise 2 — Code the Serial Gauss-Seidel Program for Solving the Dirichlet Problem............ 3

Task 1 — Open the Project SerialGaussSeidelccoviiiiiiiiie e 3
Task 2 — INPUL the INILAI DAA.........oiieeieeei e e e 4
Task 3 — Set the INItIAl DALAocveeieiiiiie e e 6
Task 4 —Terminate the Program EXECULIONueeiiiiiiiiiiiiiiecce e e e e 7
Task 5 — Implement the Gauss-Seidel AlGOrithm ... 7
Task 6 — Carry out the Computational EXPeriments..........c.uuueviieeiiiviiiieieeee e sesiieee e e e e 9
Task 3 — Develop the Parallel Gauss-Seidel Algorithm ... 10
SUDBLASK DEFINMILION ...ttt e et e e e st beee e s seb e e e s sabeeee e e 10
Analysis of INnformation DEPENUENCIESceeiiieiiiiiiiieie e e e e e 10
Scaling and Distributing the Subtasks among the Processors..........ccccceeeviiiiiieiieeee e, 12
Exercise 4 — Code the Parallel Gauss-Seidel Program for Solving the Dirichlet Problem 12
Task 1 — Open the Project ParallelGaussSeidel ... 12
Task 2 —Initialize and Terminate the Parallel Program............ccccceeviiiiiiiieeie e 13
Task 3 — INPUL the INItIAI DA ..o e e e e e 14
Task 4 —Terminate the CalCUlatioNScooi i 16
Task 5 — Distribute the Data among the ProCESSESccccuvvieiiie it a e 16
Task 6 — Exchange the Boundary Rows among the Neighboring Processes............ccccee... 18
Task 7 — Implement the Parallel Algorithm Iterations...........ccccccveee i 19
Task 8 — Calculating the Maximum Result Deviationccieiiiiiiiiieeeee e 21
Task 9 — Gather the RESUILSuuiiiii e e 22
Task 10 — Test the Parallel Program COITECINESSccuvviiiieie et e e a e 22
Task 11 — Implement the Gauss-Seidel Algorithm for Any Given Gridcccoocveeieiiiieeenne 24
Task 12 — Carry out the Computational EXPEeriments..........cccuveeereeeiiiiiiiinenee e sciiinveereeee e 26
DISCUSSIONS ...ttt e ettt e oottt et e e e e e o a e b e e et e e e e e e e bbb be e e e e e e e e e anbbbe e e e e e e e e annbebneeaaeeseannrens 27
T (ol [T TP PPT PR 27
Appendix 1. The Program Code of the Serial Gauss-Seidel Algorithmccccoocveeeeiiiinnnee, 27
Appendix 2 — The Program Code of the Parallel Gauss-Seidel Algorithmccccoovieeennen 29

Partial differential equations are widely used in various scientific and technical fields. Unfortunately,

analytical solution of these equations may only be possible in simple special cases. Therefore approximate
numerical methods are usually used for solving partial differential equations. The amount of computations to
perform here is usually significant. The use of high-performance systems is traditional for this sphere of
computational mathematics. Numerical solution of differential equations in partial derivatives is a subject of
intensive research.

Lab Objective

The objective of this lab is to develop a parallel program, which provides the solution to one of the
problems described by differential equations in partial derivatives, i.e. the Dirichlet problem for the Poisson
equation. The lab assignments include:

Exercise 1 — Stating the Dirichlet problem.
Exercise 2 — Code the serial Gauss-Seidel program for solving the Dirichlet problem.
Exercise 3 — Develop the parallel Gauss-Seidel algorithm.

Exercise 4 — Code the parallel Gauss-Seidel program for solving the Dirichlet problem.

Estimated time to complete this lab: 90 minutes.

The lab students are assumed to be familiar with the related sections of the training material: Section 4
“Parallel programming with MPI”, Section 6 “Principles of parallel method development” and Section 12
“Parallel methods of solving differential equations in partial derivatives”. Besides, the preliminary lab “Parallel
programming with MPI” is assumed to have been done.

Exercise 1 — Stating the Dirichlet Problem

In this lab we will consider the numerical solution of the Dirichlet problem for the Poisson equation. It
is defined as a problem of finding the function u =u(x,y) that satisfies the following equation in the domain

D:
Stu Stu

prasav Rl CICOLES

and takes the value g(x,y) at the boundary D° of the domain D (the functions f and g are given in the

problem statement). Such model can be used for describing steady liquid flow, stationary thermal fields, heat
transportation processes with the internal heat sources, elastic plate deformation etc. This example is often
used as a training problem for demonstrating the ways to provide efficient parallel computations (see Section
12 “Parallel methods of solving differential equations in partial derivatives”).

For simplicity we will further use the unit square as a function statement domain:

D={(x,y)eR*:0<x,y<1}.

The method of finite differences (the grid method) considered in this lab is most widely used for
numerical solving of differential equations. Following this approach, the domain D is represented as a
discrete (uniform, as a rule) set (grid) of points (nodes). Thus, for instance, the rectangular grid in the domain
D can be given as follows (Figure 12.1):

Dy ={(x;,y;) 1 x; =ih, y; = jh, 0<i,j<N+1,
h=1/(N+1),

where the value N specifies the number of inner nodes for each coordinate in D domain.

o o o o

. G
1
4(i1)
o—-40 @
(-1,j) T_ (i+1,))
i

o
(ij+1)

©o o o o o o o o o
O e e e e e e e O
O e e e o e e e O
O e e e e e e e O
o o o o o o o o o

o e e e e

.
.
.
o

.
.
.
o

o e e e e

Figure 6.1. Rectangular grid in domain D (the dark points represent the inner nodes, the
nodes are numbered from left to right in rows and from top to bottom in columns)

Let us denote by u; values of the function u(x,y) at the points(x;,y;). Then using the five-point
template (see Figure 12.1) we can present the Poisson equation in the finite difference form:
Uiy +u Fuy gty —Auy B
2 =Jij-

i+1,j

This equation can be solved with regard to u;;:

_ 2
u; = 0.25(ui_],j Fjpg U g U —h fii)'

It makes possible to determine u,; value from the given values of the function u(x,y)in the neighboring

nodes of the used grid. This result serves as a basis for developing various iterative schemes for solving the

Dirichlet problem. At the beginning of calculations in these schemes an initial approximation for values u;;

is formed, and then these values are sequentially recalculated in accordance with the given formula. Thus, for
instance, the Gauss-Seidel method uses the following rule for updating values of approximations:

k_ k k=1 k k1 _ g2
wy =025 Au - oFul us —h Ji)s

i+l,j ij-1 i,j+l
according to which the next k-th approximation of the valueu,; is calculated from the last k-th approximation

and u;

of the values u; ; ; and u;; ; and the next to last (k-7)-th approximation of the values u [-

oJ i+l,j

Iterating continues till the variations of values u; , which are obtained as a result of iteration, become less

iy »
than a certain given value (the required accuracy). The sequence of approximations obtained by this method
converges to the Dirichlet problem solution, while the solution error is of h?* order.

The pseudo-code for the described Gauss-Seidel algorithm for solving the Dirichlet problem may be
presented as follows:

// Sequential Gauss-Seidel algorithm
do {
dmax = 0; // maximal variation of the values u
for (i=1; i<N+1; i++)
for (J=1; j<N+1; j++) {
temp = u[il01;
ulilgl = 0. 25*Qui-111+ufi+11031+
ulilb-1]+uli10+1]-h*h*FLi1 01D
dm = Fabs(temp-u[il[JD);
if (dnax < dm) dmax = dm;

by
} while (dmax > eps);

Further on we will assume the function f'to be identically equal to zero, i.e. f{x,y)=0, in order to decrease
the complexity of the lab to be executed.

Exercise 2 — Code the Serial Gauss-Seidel Program for Solving
the Dirichlet Problem

The Exercise implies the necessity to implement the serial Gauss-Seidel algorithm for solving the Dirichlet
problem. The initial version of the program to be developed is given in the project SerailGaussSeidel,, which
contains a part of the initial code, where the necessary project parameters are set. In the course of doing the
Exercise, it is necessary to add the initial data input, the implementation of the Gauss-Seidel algorithm and the
result output to the given program version.

Task 1 — Open the Project SerialGaussSeidel

Open the project SerialGaussSeidel using the following steps:

o Start the application Microsoft Visual Studio 2005, if it has not been started yet,

¢ Execute the command Open—Project/Solution in the menu File,

e Choose the folder c:\MsLabs\SerialGaussSeidel in the dialogue window Open Project,

e Make double click on the file SerialGaussSeidel.sln or execute the command Open after selecting the
file.

After the project has been opened in the window Solution Explorer (Ctrl+Alt+L), make double click on the
file of the initial code SerialGS.cpp, as it is shown in Figure 6.2. After that, the code, which has to be enhanced,
will be opened in the workspace of the Visual Studio.

solution Explorer - SerialGausss...[X)
= B
J Solution 'SerialGaussSeidel (1 projed

= -_[;3 SerialGaussseidel

|1 Header Files
[Resource Files
= |.& Source Files
4 Serialas.cpp

< >
S goluti... [Fclass ... |[ZPrape...

Figure 6.2. Opening the File Serial GS.cpp

The file SerialGS.cpp provides access to the necessary libraries and also contains the initial version of the
hea program function — the function main. The available program variant contains the declaration of variables
and printout of the initial program message.

Let us consider the variables, which are used in the main function of the application. The first variable
pMatrix is the matrix, which stores the values of the given domain nodes. The variable Size defines the matrix
size (the matrix pMatrix is assumed to be square and its dimension is assumed to be SizexSize). The variable Eps
is used to store the required solution accuracy. To store the number of the executed iterations of the Gauss-Seidel
algorithm we will use the variable Iterations.

double* pMatrix; // Matrix of the grid nodes

int Size; // Matrix size
double Eps; // Required accuracy
int Iterations; // lteration number

It should be noted that in order to store the matrix pMatrix we should use a one-dimensional array, where
the matrix is stored rowwise. Thus, the element, located at the intersection of the i-th row and the j-th matrix
column in a one-dimensional array, has the index i*Size+;.

The program code, which follows the declaration of variables, is the initial message output and waiting for
pressing any button before the termination of the application execution:

printf ("Serial Gauss - Seidel algorithm\n');
getch();

Now it is possible to make the first application run. Execute the command Rebuild Solution in the menu
Build. This command makes possible to compile the application. If the application is compiled successfully (in
the lower part of the Visual Studio window there is the following message: "Rebuild All: 1
succeeded, 0 failed, 0 skipped"), press the key F5 or execute the command Start Debugging of
the menu Debug.

Right after the code start the following message will appear in the command console:
“Serial Gauss-Seidel algorithm".

In order to exit the program, press any key.

Task 2 — Input the Initial Data

In order to set the initial data of the serial Gauss-Seidel algorithm for solving the Dirichlet problem, we will
develop the function Processinitialization. This function is intended for inputting the grid size in the solution
domain (the size of the matrix pMatrix) and the required accuracy Eps of solving the problem and for allocating
the required memory. Thus, the function should have the following heading:

// Function for memory allocation and initialization of grid nodes
void Processinitialization (double* &pMatrix, int &Size, double &Eps);

At the first step it is necessary to input the grid size in the problem domain (to set the value of the variable
Size). Add the bold marked code to the function Processinitialization:

// Function for memory allocation and initialization of grid nodes

void Processlnitialization (double* &pMatrix, int &Size, double &Eps) {
// Setting the matrix size
printf('"\n Enter the grid size: ");

scanf("'%d", &Size);
printf(''\n Chosen grid size = %d", Size);

}

The user can enter the grid size, which is read from the standard input stream st¢din and than the value is
stored in the integer variable Size. The value of the variable Size is further printed out (Figure 12.3).

Add the call of the initialization function Processinitialization to the main s function after the initial
message line:

void main() {
double* pMatrix; // Matrix of the grid nodes

int Size; // Matrix size
..double Eps; // Required accuracy
int Iterations; // lteration number

printf ("Serial Gauss - Seidel algorithm\n');
// Process initialization

Processinitialization(pMatrix, Size, Eps);
getch();

Compile and run the application. Make sure that the value of the variable Size is set correctly.

© WINNT ' system32' cmd.exe - SerialGaussSeidel.exe

Microsoft Windows 2000 [Uersion 5.00.21951
CC> Copyright 1985-2000 Microsoft Corp.

c:“MzLahs\SerialGaussSeidel>SerialGaussSeidel.exe
Serial Gauss — Seidel algorithm

Enter the grid size: 10

Chosen grid size = 10

Figure 6.3. Setting the Grid Size

As in case of previous labs, we will control the input correctness. Let us implement the check of the grid
size and, if there is an error there (the set size of less than 3), we will continue to ask for the grid size until some
accepted value is entered. In order to provide this behavior we will place the code, which inputs the grid size, to
the loop:

// Setting the grid size
do {
printf('"\n Enter the grid size of the initial objects: ');
scanf("'%d", &Size);
printf(C"\n Chosen the grid size = %d", Size);
it (Size <= 2)
printf('"\n Size of the grid must be greater than 2!'\n");

¥
while (Size <= 2);

Compile and run the application again. Try to enter an unaccepted number as the grid size. Make sure that
invalid situations are processed correctly.

Let us implement now the input of the required accuracy value Eps. Add the following code to the the
function Processinitialization:

// Setting the required accuracy
do {
printf(""\n Enter the required accuracy: '");
scanf("'%l ", &Eps);
printf("''\n Chosen accuracy = %1, Eps);
it (Eps <= 0)
printf(""\n Accuracy must be greater than 0!'\n'");

while (Eps <= 0);

Compile and run the application. Make sure that the value of the variable Eps is set correctly.

Task 3 — Set the Initial Data

The initialization function must provide also memory allocation for storing data (add the bold marked code
to the function Processinitialization):

// Function for memory allocation and initialization of grid nodes
void Processlnitialization (double* &pMatrix, int &Size) {

-}/ Setting the required accuracy
do {

<.>
}
while (Eps <= 0);

// Memory allocation
pMatrix = new double [Size*Size];

}

It is necessary to set the values of all elements of the matrix pMatrix. To carry out these operations, we will
develop one more function DummyDatalnitialization. The hearding and the implementationtion of the function
are given below:

// Function for simple setting the grid node values
void DummyDatalnitialization (double* pMatrix, Int Size) {
int i, J; // Loop variables
// Setting the grid node values
for (1=0; i<Size; i++) {
for (J=0; j<Size; j++)
if ((1==0) || (i== Size-1) || (4==0) || (==Size-1))
pMatrix[i*Size+j] = 100;
else
pMatrix[i*Size+j] = O;
}
e

As you can see from the given code, this function provides setting the values of the function u in the grid nodes.
While the value 0 is set for all the inner grid nodes, the value 100 is set for all the boundary nodes (i.e. the
function g for setting the values at the domain border is equal to g=700).

The function DummyDatalnitialization must be called immediately after the allocation of the memory in
the function Processinitialization:

// Function for memory allocation and initialization of grid nodes
void Processlnitialization (double* &pMatrix, int &Size, double &Eps) {

// Memory allocation
<.>

// Setting the grid node values
DummyDatalnitialization(pMatrix, Size);
by

Let us develop one more function, which will further help to control the initial data setting. This is the
function of the formatted output of the matrix PrintMatrix. The pointer to the one-dimensional array, where the
matrix is stored rowwise, and the matrix sizes both vertically (the number of rows RowCounf) and horizontally
(the number of columns RowCount) are given as arguments to the function PrintMatrix:

// Function for formatted matrix output
void PrintMatrix (double* pMatrix, int RowCount, int ColCount) {
int i, J; // Loop variables
for (i=0; i<RowCount; i++) {
for (J=0; j<ColCount; j++)
printf("'%7.4F ', pMatrix[i*ColCount+j]);
printf(C"\n");

Let us add the call of the function to the main function:

// Process initialization
Processinitialization(pMatrix, Size, Eps);

// Matrix output
printf (“Initial Matrix: \n”);
PrintMatrix (pMatrix, Size, Size);

Compile and run the application. Make sure that the data setting is performed according to the above-
described rules (See Figure 6.4). Run the application several times, set various initial values.

i ndows 2 on 5.00.21951
{C> Copyl 1ght 1985 2000 Microsoft Corp.

c :“MsLahssSerialGaussSeidel>SerialGaussSeidel.exe
Serial Gauss — Seidel algorithm

Enter the grid size of the initial obhjects: §

Chosen grid size =5
Enter the reguired accuracy: 10

Chosen accuracy = 10.000000Initial Matwrix:
100 . 0000 1IIIIII ODoD 100.0000 100.0000 100.0000
100.0000 0.0000 O0.0000 O.0000 100.0000
100.0000 0.0000 O.0000 O.0000 100.0000
100.0000 0.0000 O0.0000 O.0000 100.0000
100.0000 100.0000 100.0000 100.0000 100.0000

Figure 6.4. The Result of the Program Execution after the Termination of Task 3

Task 4 —Terminate the Program Execution

In this Task we should develop a function for correct program termination before the implementation of the
Gauss-Seidel algorithm. For this purpose it is necessary to deallocate the memory, which has been allocated
dynamically in the course of the program execution. Let us develop the corresponding function
ProcessTermination. The memory was allocated for storing the initial matrix pMatrix. Consequently, this array
must be given to the function ProcessTermination as argument:

// Function for computational process termination
void ProcessTermination(double* pMatrix) {

delete [] pMatrix;
e

The call of the function ProcessTermination must be executed before the termination of the function main:

// Process initialization
Processlinitialization(pMatrix, Size, Eps);

// Matrix output
printf (“Initial Matrix: \n);
PrintMatrix (pMatrix, Size, Size);

// Computational process termination
ProcessTermination(pMatrix) ;

Compile and run the application. Make sure it is executed correctly.

Task 5 — Implement the Gauss-Seidel Algorithm

Let us develop the main part of the computational program. In order to implement the Gauss-Seidel
algorithm for solving the Dirichlet problem, we will develop the function ResultCalculation, which accepts the
initial matrix pMatrix, the matrix size Size, the required accuracy of solving the problem Eps as input
parameters. We will add the variable lterations as an output parameter. In this variable the function will return
the number of the executed iterations of the Gauss-Seidel algorithm until the required accuracy is achieved.

In accordance with the algorithm described in Exercise 1, the code of the function must be as follows:

// Function for the Gauss-Seidel algoritm
void ResultCalculation(double* pMatrix, int Size, double &Eps,
int <erations) {
int i, J; // Loop variables
double dm, dmax,temp;
Iterations = O;
do {
dmax = O;
for (i = 1; i < Size - 1; i++)
for(J = 1; J < Size - 1; j++) {
temp = pMatrix[Size * i + j];

pMatrix[Size * i + j] 0.25 * (pMatrix[Size * 1 + jJ + 1] +
pMatrix[Size * i + j - 1] +
pMatrix[Size * (i + 1) + j] +
pMatrix[Size * (i - 1) + j1):

dm = fabs(pMatrix[Size * i + j] - temp);
if (dnax < dm) dmax = dm;

}

Iterations++;

}
while (dmax > Eps);
}

Let us call the function, which implements the Gauss-Seidel algorithm, from the main program. In order to
control the correctness of the program execution, we will print out the matrix of values:

// Process initialization
ProcessiInitialization(pMatrix, Size);

// Matrix and vector output
printf (“Initial Matrix: \n”);
PrintMatrix (pMatrix, Size, Size);

// Gauss-Seidel method
ResultCalculation(pMatrix, Size, Eps, lterations);

// Printing the result

printf(''\n Number of iterations: %d\n", lIterations);
printf (““\n Result matrix: \n”);

PrintMatrix (pMatrix, Size, Size);

// Computational process termination
ProcessTermination(pMatrix);

Compile and run the application. Analyze the results of the Gauss-Seidel algorithm execution. Carry out
several computational experiments changing the computation grid size.

I::"-.‘W'INNT"-.,5y5ten132"w.,cmd.ene - serialGaussSeidel.exe

c:“MsLabhs“SerialGaussSeidel>SerialGaussSeidel.exe
Serial Gauss — Seidel algorithm

Enter the grid size of the initial obhjects: &

Chosen grid zize = &
Enter the required accuracy: 10

Chosen accuracy = 10.000000Initial Matrix:
imm.mmmm 100. 0000 1mm.ggmwm1mm.mmmm 1mgﬁgmmm

0o.000an 0.0000 0. 00 nnon 100. 0
100.0000 0.0000 ©O.0000 O.0000 1000000
100.0000 0.0000 ©O.0000 O0O.0000 100.0000
100.0000 100.0000 100.0000 100.0000 100.0000

Mumber of iterations: 5

Result matrpix:

100. 0000 100.0000 100.0000 100.0000 100.0000
100.0000 94.2078 94.1574 27.0703 100.0000
100.0000 94.1574 94.1406 27.0682 100.0000
100.0000 97.0703 97.0682 98.5341 100.0000
100.0000 100.0000 100.0000 100.0000 100.0000

Figure 6.5. The Result of the Gauss-Seidel Algorithm Execution

Task 6 — Carry out the Computational Experiments

In order to estimate the further speed up of the parallel program, it is necessary to carry out experiments on
the computation of the execution time for the serial algorithm. It is reasonable to analyze the execution time of
the algorithm for large enough computational grid sizes.

To determine the time we will add the call of the functions, which allow us to find out the execution time,
to the developed program. As previously we use the following function:

time_t clock(void);

Let us add the computation and output of the time spent for solving the Dirichlet problem to the program
code. For this purpose we will clock in before and after the call of the function ResultCalculation:

// Gauss-Seidel method

start = clock(Q);

ResultCalculation(pMatrix, Size, Eps, lterations);
finish = clock();

duration = (Ffinish-start)/double(CLOCKS PER_SEC);

// Printing the time spent by the Gauss-Seidel method
printf(C'\n Time of execution: %f", duration);

Compile and run the application. In order to carry out computational experiments with large computational
grids, switch off the matrix result output (transform the corresponding code lines into comment). Carry out the
computational experiments, and register the results in Table 6.1.

Table 6.1. The Results of the Computational Experiments for the Gauss-Seidel Method

Test Number | Grid Size | Number of Iterations | Execution Time (sec)
1 10
2 100
3 1000
4 2000
5 3000
6 4000

Let us estimate the computational complexity of the Gauss-Seidel algorithm analytically (see Section 12
“Parallel methods of solving differential equations in partial derivatives” of the training materials). The
execution time for problem solving may be generally estimated according to the expression

T, = kmN?, (6.1)

where N is the number of inner nodes for each coordinate of the domain D, m is the number of operations
performed by the method for a grid node (m=6), k is the number of method iterations before the accuracy
requirement is met, and 7 is the execution time of the basic computational operation.

Complete the table of comparison of the experiment execution time to the time obtained according to
formula (6.1). In order to compute the execution time of the basic computational operation, we will use the
following method: let us choose one of the experiments as a pivot (for instance, the experiment where the grid
size is equal to 2000) and divide the execution time of this experiment by the number of the executed operations
(the number of operations may be calculated according to the formula (6.1)). Thus, we will compute the
execution time of the operation. Then we will use this value and compute the theoretical execution time for all
the other experiments.

Calculate the theoretical execution time of matrix multiplication. Write the results in the following table.
Table 6.2. The Comparison of the Experimental and the Theoretical Gauss-Seidel Method Execution Time

The Execution Time of Basic Computational Operation 7 (sec):
Test Number | Matrix Size | Execution Time (sec) | Theoretical Time (sec)
1 10
2 100
3 1000
2000

5 3000
4000

Task 3 — Develop the Parallel Gauss-Seidel Algorithm

For the purpose of developing the parallel algorithm, it is necessary to choose the method for partitioning
the processed data among the processors. Two different methods of data distribution are possible in case of
developing the parallel methods of solving the Dirichlet problem. These are the one-dimensional (or block-
striped) scheme and two-dimensional (or chessboard block) computational grid partitioning.

We will consider the block-striped scheme of the computation decomposition in detail later (see also
Section 12 “Parallel methods of solving differential equations in partial derivatives” of the training materials).

Subtask Definition

In case of block-striped partitioning the computational domain is divided into horizontal or vertical stripes
(Figure 6.6a and 6.6b). The number of stripes is set by the number of processors. The stripe size is usually the
same for all the processors. The horizontal boundary nodes (the first and the last rows) are included into the first
and the last stripes correspondingly. The stripes for processing are distributed among the processors.

The division of the rows and columns into stripes is performed in the majority of cases on the continuous
(sequential) basis. This is the approach that we use in this lab. This approach involves presenting the matrix A4 for
horizontal rowwise partitioning in the following way:

A=(AmA“mH%4y¥Aﬁ=@%ﬁﬁrwa%JJj=%H:ﬂ0§j<k}k=nﬂp,

where a; = (a;;, a;z, ... a;,), 05 i<m, isthe i-th row of the matrix 4 (the row number m is assumed to be
divisible by the number of processes p without remainder, i.e. m = k-p).

The essential aspect of implementing the Gauss — Seidel method computations with data distribution of this
type is that the boundary rows of the previous and the next grid stripes should be replicated on the processor,
which performs processing of the stripe. The replicated stripe boundary rows are used only for calculations. The
recalculation of these rows is performed in the stripes of the initial row location. Thus, boundary rows should be
replicated prior to the beginning of each iteration of the grid method.

~
oS
~

(6)
Figure 6.6. Block-Striped Decomposition of the Grid Nodes among the Processors

B kauecTBe HayagbHOTO BapHAHTA PACCMOTPHUM MPENCIBbHBIN CiIydail, KOTr[Ja KOJMYECTBO MPOLECCOPOB
COBIIaJaeT C YHCIOM BHYTPEHHHX CTPOK CETKH, T.e. p=N. B Takoil curyarmu mosoca Kaxiaoro mporieccopa
COCTOMT W3 TPEX CTPOK, W3 KOTOPBIX TOJBKO OJHA SIBJISETCSA IEPEBBIYMUCIIAEMOM, a JBE IPYTHUX CTPOKH
JIyOIUPYIOTCS ¢ COCEHUX MporeccoB. [IpumeM majnee BCe BBIYMCIIEHHS, CBSI3aHHBIE ¢ 00pAabOTKOM KaxI0U U3
TaKUX T0JIOC, B KAYECTBE OA3060U GbIYUCIUMENbHOU NO03A0AYU.

Analysis of Information Dependencies

The parallel version of the Gauss - Seidel method in case of block-striped data distribution consists in
simultaneous stripes processing on all the available processors according to the following scheme:

// Gauss-Seidel method, block-striped data distribution
// Calculations performed on each processor
do {
// < exchanging the boundary stripe rows among the neighbors >

10

// < stripe processing >
// < calculating the total comptuation error dmax >}
while (dmax > eps); // eps — the required accuracy of computations

To make the following algorithm presentation more precise let us introduce the following notation:

— ProcNum — the number of processor, which perform the described operations,

— PrevProc, NextProc — the numbers of neighboring processors containing the previous and the

following stripes,

— NP — the number of processors,

— M - the number of rows in the stripe (the replicated boundary rows are not included),

— N —the number of inner nodes in a grid row (i.e. N+2 nodes in a row).

To enumerate the stripe rows we will use the enumeration where rows 0 and M+ are the boundary rows
replicated from the neighboring stripes and own stripe rows of the processor are enumerated from / to M.

Figure 6.7. The Scheme of the Boundary Rows Transmission among the Neighboring
Processors

The procedure of boundary row exchange among the neighboring processors may be divided into two
sequent operations. During the first operation each processor transmits its lowest boundary row to the following
processor and receives an identical row from the previous processor (see Figure 6.7). The second transmission
part is performed in the reverse order: the processors transmit their upper boundary rows to the previous
neighbors and receive identical rows from the following neighboring processors.

Carrying out such data transmissions may be represented in a general way as follows (for data
transmissions we use a pseudo code close to MPI functions):

// Transmission of the lower boundary row to the following processor and
// receiving the transmitted row from the previous processor
Sendrecv(u[M][*].,N+2,NextProc,u[0][*].,N+2,PrevProc);

The implementation of such combined function Sendrecv is usually performed so as to provide both the
correct execution on the boundary processors, when it is not necessary to perform one of the transmission
operations, and the alternation of the transmission procedures on the processors in order to avoid deadlock
situations. It should be also noted that the function Sendrecv executes usually all the necessary data transmission
operations in parallel.

In order to compute the total computational error for all the processors, you can use the cascade scheme.
MPI provides the special function MPI Allreduce for this purpose.

The general computational scheme for each processor may be presented in the pseudo-code in the
following way:

// Gauss-Seidel method, block-striped data disrtibution

// Calculations performed on each processor

do {
// Exchanging the boundary stripe rows among the neighbors
Sendrecv(u[M][*],N+2,NextProc,u[0][*],N+2,PrevProc);
Sendrecv(u[1][*],N+2,PrevProc,u[M+1][*],N+2,NextProc);

11

// < stripe processing with the error estimation dm >
// Computating the total computational error dmax
Allreduce(dm,dmax,MAX,0);

} while (dmax > eps); // eps — the required accuracy

Scaling and Distributing the Subtasks among the Processors

The number of the available processors p is, as a rule, considerably less than the number of the basic
subtasks N (p << N). A possible way to aggregate computations is to use the block-striped decomposition

scheme of the matrix 4. This approach corresponds to the aggregation of computations connected with updating
the nodes of one or several grid rows (horizontal partitioning) or columns (vertical partitioning) of the matrix 4
within a basic computational subtask. These two types of partitioning are practically equal. Taking into account
that the arrays are located rowwise for the algorithmic language C we will further consider only partitioning the
matrix 4 into horizontal stripes.

Exercise 4 — Code the Parallel Gauss-Seidel Program for Solving
the Dirichlet Problem

In order to perform the tasks, you will have to develop the parallel Gauss-Seidel program for solving the
Dirichlet problem. This Exercise is aimed at:

e Getting additional skills at developing parallel programs, becoming familiar with variants of data
decomposition, collective communication operations,

e Developing the first version of the parallel program, which implements the Gauss-Seidel algorithm for
solving the Dirichlet problem.

As previously, the parallel program to be developed, will be composed of the following basic parts:
e [Initialization of the MPI program environment,

e The main part of the program, where the necessary algorithm of solving the stated problem is
implemented, and the data exchange among the processes executed in parallel is carried out,

e Termination of MPI program.

Task 1 — Open the Project ParallelGaussSeidel

Open the project ParallelGaussSeidel using the following steps:

o Start the application Microsoft Visual Studio 2005, if it has not been started yet,

e Execute the command Open—Project/ Solution in the menu File,

e Choose the folder c:\MsLabs\ParallelGaussSeidel, in the dialog window Open Project,

e Make double click on the file ParallelGaussSeidel.sln or select it and execute the command Open.

After the project has been opened in the window Solution Explorer (Ctrl+Alt+L), make double click on the
file ParallelGS.cpp, as it is shown in Figure 6.9. After that, the code, which has to be enhanced, will be opened
in the workspace of the Visual Studio.

Solution Explorer - Solution "Par...

= 5 =
J Solution 'ParallelzaussSeidel (1 proir
= 33 ParallelGaussSeidel
#- [Header Files
[Resource Files
= | Source Files
[ER)raralielas. cpp

< ¥

-

.:j Soluti... [FEClass ... ﬂgprope...

Figure 6.8. Opening the File ParallelGS.cpp with the Use of the Solution Explorer

12

The main function of the parallel program to be developed, which contains the declaration of the necessary
variables, is located in the file ParallelGS.cpp. The following functions copied from the serial project are also
located in the file ParallelGS.cpp: DummyDatalnitialization, ResultCalculation, PrintMatrix (detailed
information on the purpose of these functions is given in Exercise 2 of this lab). These functions may be also
used in the parallel program. Besides, the drafts for the functions of the computation initialization
(Processinitialization) and termination (ProcessTermination) are also located there.

Compile and run the application using the Visual Studio. Make sure that the initial message:

"Parallel Gauss — Seidel program”

is output into the command console.

Task 2 —Initialize and Terminate the Parallel Program

You should add the MPI header file to the program in order to use the MPI functions in your application.
Add the bold marked line to the list of the libraries in the initial code of the parallel program:

#include
#include
#include
#include

<stdlib.h>
<stdio.h>
<time.h>
<mpi.h>

Next you should initialize the MPI program environment, determine the number of available processe, the
rank of the process in the communicator MPI COMM_WORLD, and declare global variables for storing these
values (ProcNum and ProcRank correspondingly). Add the following bold marked code:

static int ProcNum = O;
static int ProcRank = -1;

// Number of the available processes
// Rank of the current process

void main(int argc, char* argv[]) {
double* pMatrix; // Matrix of the grid
int Size; // Matrix size
double Eps; // Requied accuracy
double Start, Finish, Duration;

MPI1_Init(&argc, &argv);
MP1_Comm_size(MPI_COMM_WORLD, &ProcNum);
MPI_Comm_rank(MP1_COMM_WORLD, &ProcRank);

if(ProcRank == 0)
printf("'Parallel Gauss - Seidel algorithm \n');

MPI_Finalize();
}

Compile the parallel application using Visual Studio (execute the command Rebuild Solution of the menu
option Build). In order to run the parallel program you should start the program Command prompt, doing the
following:

1. Press the key Start, and the key Run,
2. Type the name of the program emd in the dialog window, which appears on the screen (Figure 6.9)

x|

Run
- Type the name of a program, folder, document, or
5 Internet resource, and Windows will open it for you.
Open cmd| £
[OK l [Cancel] [Browse...]
Figure 6.9. Command Prompt Start

In the command line go to the folder, which contains the developed program, which is being executed

(Figure 6.10):

13

WINNT system32h cmd.exe

Microsoft Windows 2000 [Version 5.00.21951
(C» Copyright 1985-2000 Microsoft Corp.

c:rocd c:sMsLabhs“ParallelGaussSeidelndebug

C:“MzLabs“ParallelGaussSeide lndebug_

Figure 6.10. Setting the Folder, which Contains the Parallel Program

Type the command (Figure 6.11) in order to run the program using 4 processes:
mpiexec —n 4 ParallelGaussSeidel .exe

S WINNT system 32 cmd.exe

Microsoft Windows 2000 [Version 5.00.21951
(C>» Copyright 1985-2000 Microsoft Corp.

c:nrod c:sMsLabssParallelGaussSeide1ndebuy
C:“MsLabhs“\ParallelGaussSeidelndebug>mnpiexec —n 4 ParallelGaussSeidel.exe_

Figure 6.11. Starting the Parallel Program

Make sure that initial message
"Parallel Gauss-Seidel algorithm"

is output to the command console.

Task 3 — Input the Initial Data

At the next stage of developing the parallel application it is necessary to input the grid size, allocate
memory for data storage and set the initial values.

The dialog with the user for inputting the grid size must be executed by only one process (let it be the
process with the rank 0).

As previously, the function Processinitialization is used to initialize the computations:

// Function for memory allocation and data initialization
void Processlnitialization (double* &pMatrix, double* &pProcRows,
int &Size, int &RowNum, double &Eps);

First it is necessary to input the grid size, i.e. to set the value of the variable Size. Let us implement the
dialog with the user in order to input the grid size. As in case of the previous labs, we will check the correctness
of the input value. Add the following bold marked code to the function Processinitialization:

// Function for memory allocation and and data initialization
void Processlnitialization (double* &pMatrix, double* &pProcRows,
int &Size, int &RowNum, double &Eps) {
if (ProcRank == 0) {
do {
printf(''\n Enter the grid size: ™);
scanf('%d", &Size);
printf(""\n Chosen grid size = %d", Size);

14

it (Size <= 2) {
printf(''\n Grid size must be greater than 2! \n');

}
it (Size < ProcNum) {
printf('"\n The grid size must be greater than"
"the number of processes! \n ");
by

it ((Size-2)%ProcNum != 0) {
printf(C'\n Number of inner rows of the grid must be divisible by"
"the number of processes! \n");

} while ((Size <= 2) || (Size < ProcNum) || ((Size-2)%ProcNum != 0));
// Setting the required accuracy
do {

printf('"\n Enter the required accuracy: '");

scanf("'%l ", &Eps);

printf("'\n Chosen accuracy = %1, Eps);

it (Eps <= 0)

printf(""\n Accuracy must be greater than 0!'\n'");

} while (Eps <= 0);

}

After the values of the variables Size and Eps have been defined correctly, it is necessary to broadcast these
values to the other processes. For this purpose we should use the function of the broadcast MPI Bcast. Add the
following code to the program. Pay attention to the fact that the call of the function MPI Bcast must be executed
by all the processes:

if (ProcRank == 0) {
<.>
}

// Broadcasting the grid size

MP1_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD);
MP1_Bcast(&Eps, 1, MPI_DOUBLE, O, MPI_COMM_WORLD);

// Calculating the number of grid rows stored on each process
RowNum = (Size-2)/ProcNum + 2;

As it can be noted the number of the grid rows located on each process is also calculated in the added code.

Add the call of the initialization function to the program main. Compile and run the application. Make sure
that all the invalid situations are processed correctly. For this purpose, run the application several times setting
various number of parallel processes (by means of the utility mpiexec) and various values of input data.

As the next step we should allocate the memory and set the values of the grid nodes. Setting the initial data
is performed by the process with the rank 0 only. Then, according to the scheme of parallel computations,
described in Exercise 3, the grid nodes should be distributed among the processes in such a way that each
process operates with a continuous sequence of grid rows (a horizontal stripe). It should be noted that the first
version of the program being developed is oriented at the case when the number of the inner grid nodes is
divisible by the number of processes, i.e. the grid stripes on all the processes contain the same number of grid
rows. In order to store the stripe size we will use the variable RowNum. The horizontal stripe of grid rows on
each process, will be stored in the variable pProcRows (pProcRows is the matrix, which contains RowNum rows
and Size columns and which is stored rowwise).

Let us declare the following variables in the main program functions:

void main(int argc, char* argv[]) {
double* pMatrix; // Matrix of the grid

int Size; // Grid size

double Eps; // Requied accuracy

double* pProcRows; // Stripe of the matrix on current process
int RowNum; // Number of rows in matrix stripe

double Start, Finish, Duration;

Let us allocate the memory for storing the data and initialize the grid node values on the root process (the
process with the rank 0). We will use the function DummyDatalnitialization in order to set the grid node values.

Add the bold marked code to the function Processinitialization:

15

<.>
// Calculating the number of grid rows stored on each process
RowNum = (Size-2)/ProcNum + 2;

// Memory allocation
pProcRows = new double [RowNum*Size];

// Setting the initial values of the grid nodes

it (ProcRank == 0) {
// Initial matrix exists only on the root process
pMatrix = new double [Size*Size];
// Values of grid nodes are set only on the root process
DummyDatalnitialization(pMatrix, Size);

}

In order to control the correctness of the initial data input, it is possible to use the function PrintMatrix.
After the call of the function Processinitialization in the main program function, add the call of the function
PrintMatrix to print the matrix pMatrix on the root process. Compile and run the application. Make sure that the
data is set correctly.

Task 4 —Terminate the Calculations

In order to make the application complete at each stage of the development, we will develop the function
for correct program termination. For this purpose it is necessary develop the function ProcessTermination in
order to deallocate the memory for storing the matrix pMatrix and the matrix stripe pProcRows. All these arrays
must be given to the function ProcessTermination as arguments:

// Function for computational process termination
void ProcessTermination (double* pMatrix, double* pProcRows) {
if (ProcRank == 0)
delete [] pMatrix;
delete [] pProcRows;

The call of the function ProcessTermination must be executed immediately before the termination of the
parallel program:

// Process termination
ProcessTermination(pMatrix, pProcRows);
MP1_Finalize();

}

Compile and run the application. Make sure that the application is executed correctly.

Task 5 — Distribute the Data among the Processes

At this stage it is necessary to execute the data distribution in accordance with the parallel computation
scheme, given in the previous Exercise; the grid matrix must be distributed among the processes in equal
horizontal stripes. For this purpose let us develop the function DataDistribution. It should be provided that the
following parameters must be given to the function as arguments: the grid matrix pMatrix, the grid matrix stripe
pProcRows, and the matrix and stripe sizes (the size of the matrix Size and the number of rows in the horizontal
stripe RowNum):

void DataDistribution(double* pMatrix, double* pProcRows, int Size,
int RowNum);

Broadcasting the values of the grid matrix pMatrix may be provided with the help of the function
MPI Scatter. In addition the upper boundary row of the grid should be copied to the process 0, and the lower
boundary row of the grid should be sent to the process with the rank ProcNum-1.

// Function for distribution of the grid rows among the processes
void DataDistribution(double* pMatrix, double* pProcRows, int Size,
int RowNum) {
MPI_Status status;
MP1_Scatter(pMatrix+Size, (RowNum-2)*Size, MPI_DOUBLE, pProcRows+Size,
(RowNum-2)*Size, MPI_DOUBLE, O,MP1_COMM_WORLD);
// Copying the upper boundary row to the process 0

16

it (ProcRank == 0){
for(int 1=0;i<Size;i++)
pProcRows[i]=pMatrix[i];
by
// Sending the lower boundary row to the process ProcNum-1
it (ProcRank == 0)
MP1_Send(pMatrix + Size * (Size-1), Size, MP1_DOUBLE,
ProcNum - 1, 5, MPI_COMM_WORLD);
if (ProcRank == ProcNum - 1)
MP1_Recv(pProcRows + (RowNum - 1) * Size,
Size, MPI_DOUBLE, 0, 5, MPI_COMM_WORLD, é&status);

}

The call of the function DataDistribution must be executed immediately after the call of the initialization
function Processinitialization:

// Memory allocation and data initialization
ProcesslInitialization(pMatrix, pProcRows, Size, RowNum);

// Data distribution among the processes
DataDistribution(pMatrix, pProcRows, Size, RowNum);

Now let us check the correctness of the data distribution among the processes. For this purpose after the
execution of the function DataDistribution we will print out the grid matrix, and then the matrix stripes, which
are allocated on each of the processes. Let us add one more function to the application code. This function serves
for checking the correctness of the data distribution. We will call the function TestDistribution.

In order to provide the formatted output of the matrix we will use the method PrintMatrix:

// Function for testing the data distribution
void TestDistribution(double* pMatrix, double* pProcRows, int Size,
int RowNum) {
if (ProcRank == 0) {
printf("Initial Matrix: \n");
PrintMatrix(pMatrix, Size, Size);
by
MPI_Barrier(MPI_COMM_WORLD) ;
for (int 1=0; i<ProcNum; i++) {
if (ProcRank == 1) {
printf(""\nProcRank = %d \n", ProcRank);
fprintf("" Matrix Stripe:\n");
PrintMatrix(pProcRows, RowNum, Size);

}
MP1_Barrier(MP1_COMM_WORLD);

}
+

Add the call of the function for testing the data distribution immediately after the function
DataDistribution:

// Data distribution among the processes
DataDistribution(pMatrix, pProcRows, Size, RowNum);
// Distribution test

TestDistribution(pMatrix, pProcRows, Size, RowNum);

Compile the application. If you find errors, correct them, comparing your code to the code given in this
exircise. Run the application using three processes and set the grid size equal to 5. Make sure that the data
distribution is performed correctly (Figure 6.12).

17

AWINDOWS\system32\cmd.exe

c =“MzLabs“ParallelGaussSeidelsdebugmpiexec —n 3 ParallelGaussSeidel.exe
Parallel Gauss — Seidel algorithm

Enter the grid size: §
Enter the required accuracy: 0.5

iChozen accuracy = 0.500000

ficcuracy must be greater than Ot

Initial Matrix:

100 . DD0o - 100.0000 100.0000 100.0000
100.0000 0.0000 0.0000 O.0000 100.0000
100.0000 0.0000 0.0000 O.0000 100.0000
100.0000 0.0000 0.0000 O.0000 100.0000
100.0000 100.0000 100.0000 100.0000 100.0000

ProcRank = 0

100.0000 100.0000 100.0000 100.0000 100.0000

100.0000 0.0000 0.0000 O0.0000 100.0000
—6277438562204122500O0 . DOO0D —62774
385622041925000O000. 0000 62774385622
04192500OOO0DO00. D000 -62774385622041925
N0000DO0D0NDDOODODO0N00NODODO0DODODODO0DOD0DND0DO0DO0D. 000 —62774385622041 925000000,
D000000000D0DO0DODO0D00N00D0DO0DO0DD0D0D00DO0DO00D. DD00

ProcRank = 1
—6277438562204192500O00. D000 —62774
385622041925000O000. 0000 62774385622

385622041925000000000000000000000000000000000000000GOOODONOOO0. 0000 62774385622
041225000000000000000000000000000000000000O0O0DODOOOOO00.DO00 —-62774385622041925
D0000D00D0DOOOODOOD0ODONODOODODONODOODODONODDOODODO0D. 000 —62774385622041225000000|
D0000000000O000O0DODON0OOOOODO0DODD0ODOOO00D. D000

ProcRank = 2
—6277438562204192500000000000000000000000000000DDDDODODOOODOOOODOOOOO0O0. DDOD —62774

Figure 6.12. The Grid Matrix Distribution in Case when the Application Is Run Using
Three Processes and the Grid Size Is Equal to 5

Crnemyer OTMETUTb, 4YTO 3HAYEHHUS TPAaHUUYHBIX CTPOK B II0JOCax IPOLIECCOB IIOCIE HA4YaIbHOTO
pacripesieleHus] OCTAINCh HEMHUIIMATN3UPOBAHHBIMU (KpOME BepXHel IpaHu4HON CTpokH nporecca 0 u HIKHEeH
TpaHUYHON CcTpOKH mpouecca ProcNum-1). Kak pe3ynbraT, IpH Ie4aTd 3TUX IPaHUYHBIX CTPOK MOTYT OBITh

BBIBC/ICHBI ITPOU3BOJIbHBIC 3HAYCHMS.

Task 6 — Exchange the Boundary Rows among the Neighboring Processes

Let us implement the parallel Gauss-Seidel algorithm in the function ParallelResultCalculation. The grid

matrix stripe pProcRows, the grid row size Size, the number of stripe rows RowNum, the given accuracy Eps,
must be used as the function arguments. In addition the number of the executed iterations lferations should be as

as the output parameter of the function:

// Function for the parallel Gauss-Seidel method
ParallelResultCalculation(double *pProcRows, int Size, int RowNum,
double Eps, int <erations);

The call of the function ParallelResultCalculation must be performed right after data distribution:

// Data distribution among the processes
DataDistribution(pMatrix, pProcRows, Size, RowNum);
// TestDistribution(pMatrix, pProcRows, Size, RowNum);

// Parallel Gauss-Seidel method
ParallelResultCalculation(pProcRows, Size, RowNum, Eps, lterations);
TestDistribution(pMatrix, pProcRows, Size, RowNum);

It should be noted that we may use the previously developed function of data printout TestDistribution in

order to check the program execution.

The first operation, which must be executed at each parallel Gauss-Seidel algorithm iteration consists in

exchanging the boundary rows among the neighboring processes (see Exercise 3):

// Function for the parallel Gauss-Seidel method

void ParallelResultCalculation(double* pProcRows, int Size, int RowNum,

double Eps, int <erations) {
double ProcDelta, Delta;
Iterations=0;

18

// do {
Iterations++;
// Exchanging the boundary rows of the process stripe
ExchangeData(pProcRows, Size, RowNum);

// 7} while(lteration < 2);

}

(it should be noted that the maximum possible number of the algorithm iterations is set to 2 in an effort to
simplify the developed program testing.

The matrix stripe pProcRows, the row size Size, and the number of stripe rows RowNum are the arguments
of the function ExchangeData. The procedure of exchanging the boundary rows among the neighboring
processes may be implemented with the use of the function MPI Sendrecv:

// Function for exchanging the boundary rows of the process stripe
void ExchangeData(double* pProcRows, int Size, int RowNum) {
MPI_Status status;
int NextProcNum = (ProcRank == ProcNum-1)? MP1_PROC NULL : ProcRank+1;
int PrevProcNum = (ProcRank == 0) ? MP1_PROC NULL : ProcRank-1;
// Send to NextProcNum and receive from PrevProcNum
MP1_Sendrecv(pProcRows+Size*(RowNum-2), Size, MPI_DOUBLE,NextProcNum, 4,
pProcRows, Size, MPI_DOUBLE, PrevProcNum, 4, MPI_COMM_WORLD, &status);
// Send to PrevProcNum and receive from NextProcNum
MP1_Sendrecv(pProcRows + Size, Size, MPlI_DOUBLE, PrevProcNum, 5,
pProcRows + (RowNum-1)*Size, Size, MPI_DOUBLE, NextProcNum, 5,
MP1_COMM_WORLD, &status);

}

Compile the application. If you find errors, correct them, comparing your code to the code given in the
exercise. Run the application using three processes and set the grid size equal to 5. Make sure that the boundary
row exchange is performed correctly (Figure 6.13).

WINDOWS\system32\cmd.exe

Microsoft Windows HP [Uersion 5.1.2600]
{C» Copyright 1985-2001 Microsoft Corp.

e = “MzLabss\ParallelGaussSeide 1ndebug>*mpiexec —n 3 ParallelGaussSeidel.exe
Parallel Gauss — Seidel algowrithm

lEnter the grid size: 5
Enter the regquired accuracy: 0.5

accuracy = D.500000Initial Mateix:

00 100.0000 1i00.0000 100.0000 100.0000
0.0000 0.0000 O.0000 100.0000
0. ooom 0.0000 O.0D0D0 1000000
0.0000 0.0000 O.0000 100.0000
100. 0000 100.0000 100.0000 100.0000

=0
100.0000 100.0000 100.0000 1i00.0000
0.0000 0.0000 D000 100. D000
0. 00 mulolnii} D00 100. 0000

i

0. 0O0mn -D0oo DD 100. DROO
0. Dno -Dooo D000 100 . 0000
0. 000 -Dooo -DD00 100. 0000

=2

0.0000 0.0000 O.0000 100.0000
0.0000 0.0000 O.0000 100.0000
100.0000 100.0000 100.0000 1i00.0000

ic :“MzLabs~ParallelGaussSeidel~debug?>

Figure 6.13. The Grid Matrix Distribution After the Boundary Row Exchange
(the Parallel Program uses three Processes and the Grid Size Is Equal to 5)

Let us note that after the boundary row exchange the values of these rows are set and are printed correctly.

Task 7 — Implement the Parallel Algorithm Iterations

Let us enhance the implementation of the function ParallelResultCalculation using the function
IterationCalculation in order to execute the iterations of the parallel Gauss-Seidel algorithm for solving the

19

Dirichlet problem. For processing you should provide to the functions the grid matrix stripe pProcRows, the row
size Size and the number of the stripe rows RowNum as input parameters:

// Function for the execution of the Gauss-Seidel method iteration
double lterationCalculation(double* pProcRows, int Size, Int RowNum);

In accordance with the algorithm described in Exercise 1, the program code of the function will look as
follows:

// Function for the execution of the Gauss-Seidel method iteration
double IterationCalculation(double* pProcRows, int Size, iInt RowNum) {
int i, J; // Loop variables

double dm, dmax, temp;
dmax = O;
for (i = 1; 1 < RowNum-1; i++)
for(J = 1; j < Size-1; j++)
temp = pProcRows[Size *

{
+ J1;
0.25

pProcRows[Size * i + j] = * (pProcRows[Size * i1 + j + 1] +
pProcRows[Size * i1 + j - 1] +
pProcRows[Size * (i + 1) + j] +
pProcRows[Size * (i - 1) + j]);

dm = fabs(pProcRows[Size * i + j] - temp);
if (dnax < dm) dmax = dm;
}

return dmax;

}

Add the call of the function IterationCalculation to the function ParallelResultCalculation:

// Function for the parallel Gauss-Seidel method
void ParallelResultCalculation(double* pProcRows, int Size, int RowNum,
double Eps, int <erations) {
<.>
// do {
Iterations++;
// Exchanging the boundary rows of the process stripe
ExchangeData(pProcRows, Size, RowNum);

// The Gauss-Seidel method iteration
ProcDelta = lterationCalculation(pProcRows, Size, RowNum);
TestDistribution(pMatrix, pProcRows, Size, RowNum);

// 3} while(lteration < 2);

}

As it can be seen from the given program code, the call of the test function TestDistribution must be moved
to the line after the call of the newly developed function IterationCalculation.

Compile the application again. Carry out experiments and make sure that the computations are performed
correctly. It should be noted that the obtained results may differ from the results of the serial algorithm and the
only method of control is the manual check of the computation results (to simplify debugging it may be
reasonable to transform the loop into the comment).

If the application is run using three processes and the grid size is equal to 5, the computation results must
coincide with the given ones (Figure 6.14). To continue the check up, turn the comments into the loop operator
in the function ParallelResultCalculation (you may also change the constant in the loop condition and set the
necessary number of the executed parallel Gauss-Seidel method iterations).

20

c :\MsLabs“\ParallelGaussSeidel~debug?mpiexec —n 3 ParallelGaussSeidel._exe
Parallel Gauss — Seidel algorithm

FEnter the grid size: 5
Enter the required accuracy: 0.5

hosen accuracy = 0.500000Initial Matrix:
100.0000 1000000 1000000 100.0000

0.0000 0.0000 ©0.0000 100.0000

0.ooon 0.0000 00000 1000000

0.0000 0.0000 0O.0000 100.0000
100.0000 1000000 1000000 100.0000

=0
100.0000 100.0000 100.0000 1i00.0000
65.6250 57_8125 71.0938 100.0000
25 .0000 -2500 .5625 - nonn

=1

50,0000
51.5625
50. 0000

=2

25 . 0000

65.6250 57.8125 71.0738 100.0000
100.0000 100.0000 100.0000 1i00.0000

Figure 6.14. The Calculation Results in Case when the Application Is Run Using three
Processes and the Grid Size Is Equal to 5

Task 8 — Calculating the Maximum Result Deviation

To implement the Gauss-Seidel method completely we have only to add the calculation of the maximum
computation result deviation obtained at the algorithm iteration. The necessary changes of the function
ParallelResultCalculation consist in the following (add the bold marked code):

// Function for the parallel Gauss-Seidel method
void ParallelResultCalculation(double* pProcRows, int Size, int RowNum,
double Eps, int <erations) {
<.>
do {
<.>
// Calculating the maximum value of the deviation
MP1_Allreduce(&ProcDelta, &Delta, 1, MP1_DOUBLE, MPI_MAX,
MPI1_COMM_WORLD) ;
} while(Delta > Eps);
by

Pay attention to the change of the loop condition of the Gauss-Seidel method iteration repetition cycle. To
decrease the amount of the debugging output, delete the call of the function TestDistribution.

Compile the application and check the correctness of the executed computations. Thus, for instance, if the
parallel application is run using three processes and the grid size is equal to 5, the required accuracy is equal to
0.1, the processes must obtain the results given in Figure 6.15.

21

C:AWINDOWS\system32\cmd.exe

c:“MzLabhs“ParallelGaussSeidel~debug>mpiexec —n 3 ParallelGaussSeidel.exe
HParallel Gauss — Seidel algorithm

Enter the grid size: §
Enter the required accuracy: 0.5

Chosen accuracy = D.500000Initial Matrix:

H00_0000 100.0000 100.0000 100.0000 100.0000

HO00_ 000D 0.0000 O.0000 O.0000 100.0000
0.0000 0.0000 O.0000 100.0000
0.0000 0.0000 O.0000 100.0000
1000000 100.0000 1i00.0000 100.0000

=@

100.0000 100.0000 100.0000 100.0000
50.0000 37.5000 5%.3750 100.0000
0.0000 0.0000 O.0000 100.0000

=1
0.0000 0.0000 0.0000 100.0000
25.0000 6.2500 26.5625 100.0000
0.0000 0.0000 O0.0000 100.0000

=2

0D.0000 O.0000 O.0000 100.0000
50.0000 37.5000 59.3750 100.0000
100.0000 100.0000 100.0000 100.0000

Figure 6.15. The Results of the Parallel Gauss-Seidel Algorithm, in Case when the
Application Is Run Using Three Processes and the Grid Size is Equal to 5

Task 9 — Gather the Results

After the termination of the Gauss-Seidel method, it is necessary to gather the grid stripes located on
different processes, on the root process (the process with the rank 0). Let us use the function MPI Allgather,
which composes a single array of the blocks located on different communicator processes.

The function of gathering results ResultCollection will consist only of the call of the function
MPI Allgather:

// Function for gathering the calculation results
void ResultCollection(double* pMatrix, double* pProcRows, int Size,
int RowNum) {
MP1_Gather(pProcRows+Size, (RowNum-2)*Size, MPI_DOUBLE, pMatrix+Size,
(RowNum-2)*Size, MP1_DOUBLE, O,MPI_COMM_WORLD);

Add the call of the function ResultCollection to the function main:

// Parallel Gauss-Seidel method
ParallelResultCalculation(pProcRows, Size, RowNum, Eps, lterations);
// TestDistribution(pMatrix, pProcRows, Size, RowNum);

// Gathering the calculation results
ResultCollection(pMatrix, pProcRows, Size, RowNum);
TestDistribution(pMatrix, pProcRows, Size, RowNum);

Compile and run the application, Estimate the correctness of its execution. Use, as previously, the print
function TestDistribution to check the correctness.

Task 10 — Test the Parallel Program Correctness

After the function of the result collection is performed, it is necessary to check the correctness of the
program execution. Let us develop the function TestResult for this purpose. It will compare the results of the
serial and parallel programs. To execute the serial algorithm, it is possible to use the function
SerialResultCalculation, developed in Exercise 2.

To make the serial algorithm SerialResultCalculation operate the same data as the developed function
ParallelResultCalculation,, it is necessary to produce a copy of the data using the function CopyData:

// Function to copy the initial data
void CopyData(double *pMatrix, int Size, double *pSerialMatrix) {
copy(pMatrix, pMatrix + Size, pSerialMatrix);

22

Let us add the call of this function to the program code. It is necessary to declare the variable for storing the
copy of the data and to make ready this copy:

double* pMatrix; // Matrix of the grid

double* pProcRows; // Stripe of the matrix on the current process
double* pSerialMatrix; // Result of the serial method

MPI1_Init(&argc, &argv);

MP1_Comm_size(MPI_COMM_WORLD, &ProcNum);
MP1_Comm_rank(MPI_COMM_WORLD, &ProcRank);

<.>

// Data distribution among the processes

DataDistribution(pMatrix, pProcRows, Size,RowNum);

// Creating the copy of the initial data
if (ProcRank == 0) {
pMatrixCopy = new double[Size*Size];
CopyData(pMatrix, Size, pSerialMatrix);

}

Besides, it is necessary to deallocate the allocated memory for the serial algorithm:

// Process termination

if (ProcRank == 0) delete []pSerialMatrix;
ProcessTermination(pMatrix, pProcRows);
MPI_Finalize();

The function TestResult must have access to the matrices pMatrix and pCMatrix and should be executed
only on the root process:

// Function for testing the computation result

void TestResult(double* pMatrix, double* pSerialMatrix, int Size,
double Eps) {
int equal = 0; // =1, if the matrices are not equal
int lter;

if (ProcRank == 0) {
SerialResultCalculation(pSerialMatrix, Size, Eps, lter);
for (int i=0; i<Size*Size; i++) {
if (fabs(pSerialMatrix[i]-pMatrix[i]) >= Eps) {
equal = 1; break;
}

}
if (equal == 1)
printf("'The results of the sequential and parallel programs"
"are NOT identical. Check your code.');
else
printF(""The results of the sequential and parallel programs"
"are identical.™);

}
}

The result of the function execution is printing a diagnostic message. You can test the result of the parallel
program regardless of the initial data values with the help of this function.

It should be noted that in the general case the results of the serial and the parallel variants of the Gauss-
Seidel methods may differ, as the sequences of processing the grid nodes may be different in these two variants.
However, the deviation of the obtained calculation results must be within the limits of the required accuracy Eps
(see Section 12 “Parallel methods of solving the differential equation in partial derivatives” of the training
materials).

Transform the call of the debugging function TestDistribution, which has been previously used for testing
the correctness of the parallel program, into comments. Instead of the function DummyDatalnitialization, which
generates the initial data of the simple type, call the function RandomDatalnitialization, which generates the
initial data in the innerr grid nodes by means of the random data generator.

// Function for setting the grid node values by a random generator
void RandowmDatalnitialization (double* pMatrix, int Size) {

23

int i, J; // Loop variables
srand(unsigned(clock()));
// Setting the grid node values
for (i=0; i<Size; i++) {
for (J=0; j<Size; j++)
it ((1==0) || (i==Size-1) || ==0) || (==Size-1))
pMatrix[i*Size+j] = 100;
else
pMatrix[i*Size+j] = rand()/double(1000);
}
>

Compile and run the application. Set different grid sizes and the values of the required computation
accuracy. Make sure that the application operates correctly.

Task 11 — Implement the Gauss-Seidel Algorithm for Any Given Grid

The parallel program, which was developed in the course of executing the previous tasks, was
implementeded for the case when the number of the inner grid nodes (Size-2) is divisible by the number of
processors ProcNum. In this case the grid matrix is divided among the processes in equal stripes, and the number
of rows RowNum processed by the process is the same for all the processes.

Let us consider the general case when the number of the inner grid nodes (Size-2) is not divisible by the
number of processes ProcNum. In this case the number of rows in the stripe on each process can be different:
some processes will get _(Size -2)/ ProcNumJ + 2, and the rest of them - |_(Size -2)/ ProcNum_\+ 2 matrix rows
(the operation L J means rounding the value down to the nearest smaller integer number, the operation (—|
means rounding the value up to the nearest greater integer number).

Let us eliminate the processing of an invalid situation in the function Processlinitialization. This situation
occurs in the case when the number of inner grid nodes is not divisible by the number of processes. Now we will
use the following distribution algorithm: we will allocate the rows to processes sequentially. It is necessary to
determine how many rows the process with the rank 0 should operate, then the process with the rank 1 etc. The
process with the rank 0 is allocated |_(Size—2)/ProcNum+2J rows (the result of the operation |_ J coincides

with the result of the integer division). After the execution of this operation we have to distribute
Size—L(Size—2)/ProcNumJ—2 rows among ProcNum-1 processes etc. As a result, each next process i is

assigned the number of rows equal to the result of the integer division of the remaining row number RestRows by
the remaining process numbers, i.e. |_(RestR0ws -2)/ (ProcNum —i)+ ZJ TOWS.

Let us change the program code for calculating the value of the variable RowNum in the function
Processinitialization:

// Function for allocating the memory and initialization of the grid nodes
void Processlinitialization (double* &pMatrix, double* &pProcRows,int &Size,

int &RowNum, double &Eps) {

int RestRows; // Number of the rows, that have"t been distributed yet

<,.>

// Define the number of the matrix rows stored on each process

RestRows = Size - 2;

for (i=0; i<ProcRank; i++)

RestRows = RestRows — RestRows / (ProcNum — i);
RowNum = RestRows/ (ProcNum — ProcRank)+2;
<.>

}

In case when the grid matrix is distributed among process unequally, we cannot use the function
MPI Scatter for data distribution. Instead we should use a more general function MPI Scatterv, which gives the
opportunity to one of the processes to distribute the data among the communicator processes in continuous
element blocks of unequal size.

In order to call the function MPI Scatterv it is necessary to define two auxiliary arrays for setting the offset
and the size of the transmitted blocks. Let us add the necessary changes in the code of the function
DataDistribution:

// Function for distribution of the grid rows among the processes
void DataDistribution(double* pMatrix, double* pProcRows, int RowNum,
int Size) {

24

}

int *pSendNum; // Number of the elements sent to the process
int *pSendiInd; // Index of the first data element sent to the process
int RestRows = Size;
// Alloc memory for temporary objects
pSendInd = new int [ProcNum];
pSendNum = new int [ProcNum];
// Define the disposition of the matrix rows for the current process
RowNum = (Size — 2) / ProcNum + 2;
pSendNum[O] RowNum * Size;
pSendInd[0] 0;
for (int i=1; i < ProcNum; i++) {
RestRows = RestRows - RowNum + 2;
RowNum = (RestRows — 2) /7 (ProcNum — 1) + 2;
pSendNum[i] RowNum * Size;
pSendInd[i] pSendInd[i-1] + pSendNum[i-1] - Size;

}
// Scatter the rows

MP1_Scatterv(pMatrix , pSendNum, pSendind, MPI_DOUBLE, pProcRows,
pSendNum[ProcRank], MPI_DOUBLE, O, MPI_COMM_WORLD) ;

delete []pSendind;

delete []pSendNum;

Very much in the same way we will use the more general function MPI Allgatherv for data gathering

instead of the function MPI Allgather. As in case of using MPI Scatterv, the use of the function
MPI Allgatherv requires two additional arrays:

// Function for gathering the result vector
void ResultCollection(double *pMatrix, double* pProcResult,

}

int Size, int RowNum) {

int *pReceiveNum; // Number of elements, that the current process sends
int *pReceivelnd; // Index of the first element of the received block
int RestRows = Size;

int 1; // Loop variable

// Alloc memory for temporary objects
pReceiveNum = new int [ProcNum];
pReceivelnd = new int [ProcNum];

// Define the disposition of the result vector block of current processor
pReceivelnd[0] = O;
RowNum = (Size — 2) / ProcNum + 2;
pReceiveNum[0] = RowNum * Size;
for (1=1; 1 < ProcNum; i++){
RestRows = RestRows - RowNum + 2;
RowNum = (RestRows — 2) / (ProcNum — 1) + 2;
pReceiveNum[i] = RowNum * Size;
pReceivelnd[i] = pReceivelnd[i-1] + pReceiveNum[i-1] - Size;
bs
//Gather the whole result vector on every processor
MP 1_Allgatherv(pProcRows, pReceiveNum[ProcRank], MP1_DOUBLE, pMatrix,
pReceiveNum, pReceivelnd, MP1_DOUBLE, MPI_COMM_WORLD) ;

// Free the memory

delete [] pReceiveNum;
delete [] pReceivelnd;

Compile and run the application. Check the correctness of the Gauss-Seidel algorithm execution by means

of the function TestDistribution.

25

Task 12 — Carry out the Computational Experiments

The main challenge in the development of the parallel algorithms for solving complicated computational
problems is to provide the increase of speed up (in comparison with the serial algorithm) at the expense of using
several processors. The execution time of the parallel algorithm should be less than the execution time of the
serial algorithm.

Let us determine the parallel algorithm execution time. For this purpose we will add clocking to the
program code. As the parallel algorithm includes the stage of data distribution, the stage of the computation of
the Gauss-Seidel iterations on each process and the stage of result gather, the clocking should start immediately
before the call of the function DataDistribution, and stop right after the execution of the function
ResultCollection:

// Memory allocation and data initialization
ProcesslInitialization (pMatrix,pProcRows,Size,RowNum,Eps);

Start = MP1_Wtime(Q);
// Data istribution among the processes
DataDistribution(pMatrix, pProcRows, Size,RowNum);

// the Paralle Gauss-Seidel method
ParallelResultCalculation(pProcRows, Size,RowNum,Eps, lterations);

//Gathering the calculation results
ResultCollection(pProcRows, pMatrix, Size, RowNum);
Finish = MPI_Wtime(Q);

Duration = Finish-Start;

<.>

It is obvious that this way we will obtain the execution time of the root process. The execution time of the
other processes may appear to be slightly different. But this difference must not be significant, as we paid special
attention to the equal loading (balancing) of processes at the stage of the development of the parallel algorithm.

Add the selected code to the main function. Compile and run the application. Carry out the computational
experiments and register the results in Table 6.3.

Table 6.3. The Results of the Computational Experiments for the Parallel Gauss-Seidel Algorithm

Parallel Algorithm
Grid size Serial Algorithm 2 processors 4 processors 8 processors

Time Speed up Time Speed up Time Speed up

10

100

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

The column “Serial Algorithm” is assigned for writing the execution times of the serial Gauss-Seidel
algorithm measured in the course of testing the serial application in Exercise 2. In order to compute the speed up
divide the execution time of the serial program by the parallel programm execution time. Give the results in the
corresponding column of the table 6.3.

B omimune oT paHee BBINOJHEHHBIX Ja0OPAaTOPHBIX Pa0dOT MPOBEIUTE CAMOCTOSITEIIFHO TEOPETHUECKYIO
OLIEHKY BPEMEHHU BBINOJHEHMS MapaiensHoro anropurMma laycca-3edinens. IlonyueHHble OLEHKM BHECHTE B
Tabnuiy 6.4 ¥ CpaBHUTE C peabHBIM BPEMEHEM BBINTOJIHEHHS SKCIIEPUMEHTOB.

26

Table 6.4. The Computation Speed Up Obtained for the Parallel Gauss-Seidel Algorithm

2 processors 4 processors 8 processors
Model Experiment Model Experiment Model Experiment

Grid Size

10
100

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

Discussions

e Were the theoretical and the experiment execution time congruent? What might be the reason for
incongruity?

Exercises

1. Study the parallel Gauss-Seidel algorithm for solving the Dirichlet problem, based on block-striped
vertical matrix partitioning. Develop a program, which implements the algorithm.

2. Study the parallel Gauss-Seidel algorithm for solving the Dirichlet problem, based on chessboard block
matrix partitioning. Develop a program, which implements the algorithm.

Appendix 1. The Program Code of the Serial Gauss-Seidel Algorithm

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <time.h>
#include <math.h>

// Function for the Gauss-Seidel algoritm
void ResultCalculation(double* pMatrix, int Size, double &Eps,
int <erations) {
double dm, dmax,temp;
int i, J; // Loop variables
Iterations = 0;
do {

; 1 < Size - 1; i1++)
for(J = 1; jJ < Size - 1; j++) {
temp = pMatrix[Size * i + j];

pMatrix[Size * i + j] 0.25 * (pMatrix[Size * i + j + 1] +
pMatrix[Size * i + j - 1] +
pMatrix[Size * (i + 1) + j] +
pMatrix[Size * (i - 1) + j1);

dm = Fabs(pMatrix[Size * i + j] - temp);
if (dnax < dm) dmax = dm;

}

Iterations++;

}
whille (dmax > Eps);
}
27

// Function for computational process termination
void ProcessTermination(double* pMatrix) {

delete [] pMatrix;
by

// Function for formatted matrix output
void PrintMatrix (double* pMatrix, int RowCount, int ColCount) {
int i, J; // Loop variables
for (i=0; i<RowCount; i++) {
for (j=0; j<ColCount; j++)
printf(""%7.4F ', pMatrix[i*ColCount+j]);
printf("\n"");
}

// Function for simple setting the grid node values
void DummyDatalnitialization (double* pMatrix, int Size) {
int i, J; // Loop variables
double h = 1.0 / (Size - 1);
// Setting the grid node values
for (i=0; i<Size; i++) {
for (J=0; j<Size; j++)
if ((1==0) || (i== Size-1) || (4==0) || (==Size-1))
pMatrix[i*Size+j] = 100;
else
pMatrix[i*Size+j] = O;
}
bs
// Function for memory allocation and initialization of grid nodes
void Processlnitialization (double* &pMatrix, int &Size, double &Eps) {
// Setting the grid size
do {
printf("\nEnter the grid size: ');
scanf('%d", &Size);
printf(""\nChosen grid size = %d", Size);
if (Size <= 2)
printfF('"\nSize of grid must be greater than 2'\n");
} while (Size <= 2);
// Setting the required accuracy
do {
printf('"\nEnter the required accuracy: ");
scanf("'%l ", &Eps);
printf('"\nChosen accuracy = %I, Eps);
if (Eps <= 2)
printf('"\nAccuracy must be greater than 0I!\n');
} while (Eps <= 0);

// Memory allocation
pMatrix = new double [Size*Size];

// Setting the grid node values
DummyDatalnitialization(pMatrix, Size);

e
void main() {
double* pMatrix; // Matrix of the grid nodes
int Size; // Matrix size
double Eps; // Required accuracy
int Iterations; // lteration number

printf ("Serial Gauss - Seidel algorithm\n');

// Process initialization
Processinitialization(pMatrix, Size, Eps);

28

// Matrix output
printf ("Initial Matrix: \n");
PrintMatrix (pMatrix, Size, Size);

// The Gauss-Seidel method
ResultCalculation(pMatrix, Size, Eps, lterations);

// Printing the result

printf(C''\n Number of iterations: %d\n", lIterations);
printf (""\n Result matrix: \n");

PrintMatrix (pMatrix, Size, Size);

getch();

// Computational process termination
ProcessTermination(pMatrix);

Appendix 2 — The Program Code of the Parallel Gauss-Seidel Algorithm

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <time.h>
#include <math.h>
#include <mpi.h>
#include <algorithm.h>

static int ProcNum = O; // Number of available processes
static int ProcRank = -1; // Rank of current process

// Function for distribution of the grid rows among the processes
void DataDistribution(double* pMatrix, double* pProcRows, int RowNum,
int Size) {
int *pSendNum; // Number of elements sent to the process
int *pSendiInd; // Index of the first data element sent to the process
int RestRows=Size;
// Alloc memory for temporary objects
pSendInd = new int [ProcNum];
pSendNum = new int [ProcNum];
// Define the disposition of the matrix rows for current process
RowNum = (Size-2)/ProcNum+2;
pSendNum[O] RowNum*Size;
pSendInd[0] 0;
for (int i=1; i<ProcNum; i++) {
RestRows = RestRows - RowNum + 2;
RowNum = (RestRows-2)/(ProcNum-i)+2;
pSendNum[1] = (RowNum)*Size;
pSendInd[i] = pSendInd[i-1]+pSendNum[i-1]-Size;
ks
// Scatter the rows
MP1_Scatterv(pMatrix , pSendNum, pSendind, MPI_DOUBLE, pProcRows,
pSendNum[ProcRank], MPI_DOUBLE, O, MPI_COMM_WORLD);
delete []pSendind;
delete []pSendNum;

}

// Function for computational process termination
void ProcessTermination (double* pMatrix, double* pProcRows) {
if (ProcRank == 0)
delete [] pMatrix;
delete [] pProcRows;

}

// Function for formatted matrix output
void PrintMatrix(double *pMatrix, int RowCount, int ColCount){
int i,j; // Loop variables
for(int 1=0; 1 < RowCount; i++) {
for(J=0; j < ColCount; j++)
printf(""%7.4F ', pMatrix[i*ColCount+j]);
printfC"\n");
}

// Function for the execution of the Gauss-Seidel method iteration

double lterationCalculation(double* pProcRows, int Size, int RowNum) {

int i, J; // Loop variables

double dm, dmax,temp;

dmax = O;

for (i = 1; i < RowNum-1; i++)

for(J = 1; J < Size-1; j++) {

temp = pProcRows[Size * 1 + j];
pProcRows[Size * 1 + j] = 0.25 * (pProcRows[Size

pProcRows[Size *

pProcRows[Size *
dm = fabs(pProcRows[Size * i + j] - temp);
if (dnax < dm) dmax = dm;
}

return dmax;

}

// Function for testing the data distribution
void TestDistribution(double* pMatrix, double* pProcRows, int Size,
int RowNum) {
if (ProcRank == 0) {
printf("Initial Matrix: \n");
PrintMatrix(pMatrix, Size, Size);
by
MPI_Barrier(MPI_COMM_WORLD) ;
for (int 1=0; i<ProcNum; i++) {
if (ProcRank == 1) {
printf("\nProcRank = %d \n'", ProcRank);
// fprintf("" Matrix Stripe:\n'");
PrintMatrix(pProcRows, RowNum, Size);

}
MP1_Barrier(MP1_COMM_WORLD);

}
}

// Function for simple setting the grid node values
void DummyDatalnitialization (double* pMatrix, int Size) {
int i, J; // Loop variables
double h = 1.0 / (Size - 1);
// Setting the grid node values
for (i=0; i<Size; i++) {
for (J=0; j<Size; j++)
if ((==0) || (i== Size-1) || (4==0) || (==Size-1))
pMatrix[i*Size+j] = 100;
else
pMatrix[i*Size+j] = O;
}
}

// Function for memory allocation and initialization of grid nodes

*

i
pProcRows[Size * (i + 1) + j] +

(

-
|

=
o/

+
hl
ke
o/

void Processlnitialization (double* &pMatrix, double* &pProcRows, int &Size,

int &RowNum, double &Eps) {

30

int RestRows; // Number of rows, that haven’t been distributed yet
// Setting the grid size
if (ProcRank == 0) {
do {
printf('"\nEnter the grid size: ");
scanf("'%d"™, &Size);
it (Size <= 2) {
printf(''\n Size of grid must be greater than 2! \n'");
}

if (Size < ProcNum) {
printf("'Size of grid must be greater than"
"the number of processes! \n ");
}

s
while ((Size <= 2) || (Size < ProcNum));

// Setting the required accuracy
do {
printf('"\nEnter the required accuracy: ');
scanf("'%l ", &Eps);
printf(""\nChosen accuracy = %lf", Eps);
if (Eps <= 0)
printf('"\nAccuracy must be greater than 0I!\n');

}

while (Eps <= 0);
}
MP1_Bcast(&Size, 1, MPI_INT, O, MP1_COMM_WORLD);
MP1_Bcast(&Eps, 1, MP1_DOUBLE, O, MPI_COMM_WORLD);

// Define the number of matrix rows stored on each process
RestRows = Size;
for (i=0; i<ProcRank; i++)
RestRows = RestRows-RestRows/(ProcNum-i);
RowNum = (RestRows-2)/(ProcNum-ProcRank)+2

// Memory allocation
pProcRows = new double [RowNum*Size];
// Define the values of initial objects’ elements
if (ProcRank == 0) {
// Initial matrix exists only on the pivot process
pMatrix = new double [Size*Size];
// Values of elements are defined only on the pivot process
DummyDatalnitialization(pMatrix, Size);

}
}

// Function for exchanging the boundary rows of the process stripes
void ExchangeData(double* pProcRows, int Size, int RowNum) {
MPI_Status status;
int NextProcNum = (ProcRank == ProcNum-1)? MPI1_PROC_NULL : ProcRank + 1;
int PrevProcNum = (ProcRank == 0)? MPI_PROC_NULL : ProcRank - 1;
// Send to NextProcNum and receive from PrevProcNum
MP1_Sendrecv(pProcRows + Size * (RowNum - 2),Size, MPI_DOUBLE,
NextProcNum, 4, pProcRows, Size, MPI_DOUBLE, PrevProcNum, 4,
MP1_COMM_WORLD, é&status);
// Send to PrevProcNum and receive from NextProcNum
MP1_Sendrecv(pProcRows + Size, Size, MPlI_DOUBLE, PrevProcNum, 5,
pProcRows + (RowNum - 1) * Size, Size,MPI_DOUBLE, NextProcNum, 5,
MP1_COMM_WORLD, é&status);

}

// Function for the parallel Gauss - Seidel method
void ParallelResultCalculation (double *pProcRows, int Size, int RowNum,
double Eps, int <erations) {

31

double ProcDelta,Delta;

Iterations=0;

do {
Iterations++;
// Exchanging the boundary rows of the process stripe
ExchangeData(pProcRows, Size,RowNum);

// The Gauss-Seidel method iteration
ProcDelta = IterationCalculation(pProcRows, Size, RowNum);

// Calculating the maximum value of the deviation
MP1_Allreduce(&ProcDelta, &Delta, 1,MPI_DOUBLE, MPI_MAX,
MPI1_COMM_WORLD) ;
} while (Delta > Eps);

// Function for gathering the result vector
void ResultCollection(double *pMatrix, double* pProcResult, int Size,

}

int RowNum) {

int *pReceiveNum; // Number of elements, that current process sends
int *pReceivelnd; // Index of the first element of the received block
int RestRows = Size;

int 1; // Loop variable

// Alloc memory for temporary objects
pReceiveNum = new int [ProcNum];
pReceivelnd = new int [ProcNum];

// Define the disposition of the result vector block of current processor
pReceivelnd[0] = O;
RowNum = (Size-2)/ProcNum+2;
pReceiveNum[0] = RowNum*Size;
for (i1=1; 1 < ProcNum; i++){
RestRows = RestRows - RowNum + 1;
RowNum = (RestRows-2)/(ProcNum-i)+2;
pReceiveNum[i] = RowNum*Size;
pReceivelnd[i] pReceivelnd[i-1]+pReceiveNum[i-1]-Size;

}

// Gather the whole result vector on every processor
MP1_Allgatherv(pProcRows, pReceiveNum[ProcRank], MPI_DOUBLE, pMatrix,
pReceiveNum, pReceivelnd, MP1 _DOUBLE, MPI_COMM_WORLD) ;

// Free the memory
delete [] pReceiveNum;
delete [] pReceivelnd;

// Function for the serial Gauss — Seidel method
void SerialResultCalculation(double *pMatrixCopy, int Size, double Eps,

int <er){
int i, J; // Loop variables
double dm, dmax,temp;

Iter = 0;
do {
dmax = 0;
for (i = 1; i < Size - 1; i++)

for(J = 1; j < Size - 1; j++)
temp = pMatrixCopy[Size *

{
+ J1;
0.2

pMatrixCopy[Size * i + j] = 5 * (pMatrixCopy[Size * i1 + j + 1] +
pMatrixCopy[Size * i + j - 1] +
pMatrixCopy[Size * (i + 1) + j] +
pMatrixCopy[Size * (i - 1) + j]);

dm = fabs(pMatrixCopy[Size * 1 + j] - temp);
32

if (dnax < dm) dmax = dm;

}

lter++;

}
while (dmax > Eps);

// Function to copy the initial data
void CopyData(double *pMatrix, int Size, double *pSerialMatrix) {
copy(pMatrix, pMatrix + Size, pSerialMatrix);

// Function for testing the computation result

void TestResult(double* pMatrix, double* pSerialMatrix, int Size,
double Eps) {
int equal = 0; // =1, if the matrices are not equal
int Iter;

if (ProcRank == 0) {
SerialResultCalculation(pSerialMatrix, Size, Eps, lter);
for (int i=0; i<Size*Size; i++) {
it (fabs(pSerialMatrix[i]-pMatrix[i]) >= Eps)
equal = 1;break;
}
if (equal == 1)
printf(""The results of serial and parallel algorithms"
"are NOT identical. Check your code.');
else
printf(""The results of serial and parallel algorithms"
"are identical.™);
}
e

// Function for setting the grid node values by a random generator
void RandowmDatalnitialization (double* pMatrix, int Size) {
int i, J; // Loop variables
srand(unsigned(clock()));
// Setting the grid node values
for (i=0; i<Size; i++) {
for (j=0; j<Size; j++)
if ((1==0) || (i== Size-1) || (4==0) || (==Size-1))
pMatrix[i*Size+j] = 100;
else
pMatrix[i*Size+j] = rand()/double(1000);

}
}
void main(int argc, char* argv[]) {
double* pMatrix; // Matrix of the grid nodes
double* pProcRows; // Stripe of the matrix on current process
double* pSerialMatrix; // Result of the serial method
int Size; // Matrix size
int RowNum; // Number of rows in matrix stripe
double Eps; // Required accuracy
int Iterations; // lteration number

double currbDelta, delta;

setvbuf(stdout, 0, I10NBF, 0);
MPI1_Init(&argc, &argv);
MP1_Comm_size(MPI_COMM_WORLD, &ProcNum);
MP1_Comm_rank(MPI_COMM_WORLD, &ProcRank);

if(ProcRank == 0) {

printf(""Parallel Gauss - Seidel algorithm \n'");
fflush(stdout);

// Process initialization

ProcesslInitialization (pMatrix,pProcRows,Size,RowNum,Eps);

// Creating the copy of the initial data
it (ProcRank == 0) {
pSerialMatrix = new double[Size*Size];
CopyData(pMatrix, Size, pSerialMatrix);

// Data distribution among the processes
DataDistribution(pMatrix, pProcRows, Size,RowNum);

// Paralle Gauss-Seidel method
ParallelResultCalculation(pProcRows, Size,RowNum,Eps,
//TestDistribution(pMatrix, pProcRows, Size,RowNum);

// Gathering the calculation results
ResultCollection(pProcRows, pMatrix, Size, RowNum);
TestDistribution(pMatrix, pProcRows, Size,RowNum);

// Printing the result

printf(C'"\n Iter %d \n", lterations);

printf(""\nResult matrix: \n");

it (ProcRank==0) {
//TestResult(pMatrix,Size,pMatrixCopy,Eps);
PrintMatrix(pMatrix,Size,Size);

}

// Process termination

if (ProcRank == 0) delete []pSerialMatrix;
ProcessTermination(pMatrix, pProcRows);
MP1_Finalize();

Iterations);

34

	Learning Lab 6: Parallel Algorithms of Solving Differential
	Lab Objective
	Exercise 1 – Stating the Dirichlet Problem
	Exercise 2 – Code the Serial Gauss-Seidel Program for Solvin
	Task 1 – Open the Project SerialGaussSeidel
	Task 2 – Input the Initial Data
	Task 3 – Set the Initial Data
	Task 4 –Terminate the Program Execution
	Task 5 – Implement the Gauss-Seidel Algorithm
	Task 6 – Carry out the Computational Experiments

	Task 3 – Develop the Parallel Gauss-Seidel Algorithm
	Subtask Definition
	Analysis of Information Dependencies
	Scaling and Distributing the Subtasks among the Processors

	Exercise 4 – Code the Parallel Gauss-Seidel Program for Solv
	Task 1 – Open the Project ParallelGaussSeidel
	Task 2 –Initialize and Terminate the Parallel Program
	Task 3 – Input the Initial Data
	Task 4 –Terminate the Calculations
	Task 5 – Distribute the Data among the Processes
	Task 6 – Exchange the Boundary Rows among the Neighboring Pr
	Task 7 – Implement the Parallel Algorithm Iterations
	Task 8 – Calculating the Maximum Result Deviation
	Task 9 – Gather the Results
	Task 10 – Test the Parallel Program Correctness
	Task 11 – Implement the Gauss-Seidel Algorithm for Any Given
	Task 12 – Carry out the Computational Experiments

	Discussions
	Exercises
	Appendix 1. The Program Code of the Serial Gauss-Seidel Algo
	Appendix 2 – The Program Code of the Parallel Gauss-Seidel A

