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Partial differential equations are widely used in various scientific and technical fields. Unfortunately, 

analytical solution of these equations may only be possible in simple special cases. Therefore approximate 
numerical methods are usually used for solving partial differential equations. The amount of computations to 
perform here is usually significant. The use of high-performance systems is traditional for this sphere of 
computational mathematics. Numerical solution of differential equations in partial derivatives is a subject of 
intensive research. 

 Lab Objective 

The objective of this lab is to develop a parallel program, which provides the solution to one of the 
problems described by differential equations in partial derivatives, i.e. the Dirichlet problem for the Poisson 
equation. The lab assignments include: 

• Exercise 1 – Stating the Dirichlet problem.  
• Exercise 2 – Code the serial Gauss-Seidel program for solving the Dirichlet problem.  
• Exercise 3 – Develop the parallel Gauss-Seidel algorithm. 
• Exercise 4 – Code the parallel Gauss-Seidel program for solving the Dirichlet problem. 



Estimated time to complete this lab: 90 minutes. 
The lab students are assumed to be familiar with the related sections of the training material: Section 4 

“Parallel programming with MPI”, Section 6 “Principles of parallel method development” and Section 12 
“Parallel methods of solving differential equations in partial derivatives”. Besides, the preliminary lab “Parallel 
programming with MPI” is assumed to have been done.  

 Exercise 1 – Stating the Dirichlet Problem  

In this lab we will consider the numerical solution of the Dirichlet problem for the Poisson equation. It 
is defined as a problem of finding the function ),( yxuu =  that satisfies the following equation in the domain 
D:  
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and takes the value  at the boundary ),( yxg 0D  of the domain   (the functions  and D f g are given in the 
problem statement). Such model can be used for describing steady liquid flow, stationary thermal fields, heat 
transportation processes with the internal heat sources, elastic plate deformation etc. This example is often 
used as a training problem for demonstrating the ways to provide efficient parallel computations (see Section 
12 “Parallel methods of solving differential equations in partial derivatives”).  

For simplicity we will further use the unit square as a function statement domain:  

}1,0:),{( 2 ≤≤∈= yxRyxD . 

The method of finite differences (the grid method) considered in this lab is most widely used for 
numerical solving of differential equations. Following this approach, the domain  is represented as a 
discrete (uniform, as a rule) set (grid) of points (nodes). Thus, for instance, the rectangular grid in the domain 
D can be given as follows (Figure 12.1):  
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where the value  specifies the number of inner nodes for each coordinate in  domain.  N D
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Figure 6.1. Rectangular grid in domain D (the dark points represent the inner nodes, the 
nodes are numbered from left to right in rows and from top to bottom in columns) 

Let us denote by  values of the function at the points . Then using the five-point 
template (see Figure 12.1) we can present the Poisson equation in the finite difference form: 
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This equation can be solved with regard to : iju
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It makes possible to determine value from the given values of the function in the neighboring 
nodes of the used grid. This result serves as a basis for developing various iterative schemes for solving the 
Dirichlet problem. At the beginning of calculations in these schemes an initial approximation for values  
is formed, and then these values are sequentially recalculated in accordance with the given formula. Thus, for 
instance, the Gauss-Seidel method uses the following rule for updating values of approximations: 
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according to which the next k-th approximation of the value is calculated from the last k-th approximation 

of the values  and  and the next to last (k-1)-th approximation of the values  and . 

Iterating continues till the variations of values , which are obtained as a result of iteration, become less 
than a certain given value (the required accuracy). The sequence of approximations obtained by this method 
converges to the Dirichlet problem solution, while the solution error is of  order.  
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The pseudo-code for the described Gauss-Seidel algorithm for solving the Dirichlet problem may be 

presented as follows: 

// Sequential Gauss-Seidel algorithm 
do { 
  dmax = 0; // maximal variation of the values u 
  for ( i=1; i<N+1; i++ ) 
    for ( j=1; j<N+1; j++ ) { 
      temp = u[i][j]; 
      u[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+ 
                u[i][j-1]+u[i][j+1]–h*h*f[i][j]); 
      dm = fabs(temp-u[i][j]); 
      if ( dmax < dm ) dmax = dm; 
    } 
} while ( dmax > eps ); 

Further on we will assume the function f to be identically equal to zero, i.e. f(x,y)≡0, in order to decrease 
the complexity of the lab to be executed.   

 Exercise 2 – Code the Serial Gauss-Seidel Program for Solving  
the Dirichlet Problem 

The Exercise implies the necessity to implement the serial Gauss-Seidel algorithm for solving the Dirichlet 
problem. The initial version of the program to be developed is given in the project SerailGaussSeidel,, which 
contains a part of the initial code, where the necessary project parameters are set. In the course of doing the 
Exercise, it is necessary to add the initial data input, the implementation of the Gauss-Seidel algorithm and the 
result output to the given program version. 

 Task 1 – Open the Project SerialGaussSeidel  

Open the project SerialGaussSeidel using the following steps: 
• Start the application Microsoft Visual Studio 2005, if it has not been started yet, 
• Execute the command Open→Project/Solution in the menu File, 
• Choose the folder с:\MsLabs\SerialGaussSeidel in the dialogue window Open Project, 
• Make double click on the file SerialGaussSeidel.sln or execute the command Open after selecting the 

file. 
After the project has been opened in the window Solution Explorer (Ctrl+Alt+L), make double click on the 

file of the initial code SerialGS.cpp, as it is shown in Figure 6.2. After that, the code, which has to be enhanced, 
will be opened in the workspace of the Visual Studio. 

3 



 
Figure 6.2. Opening the File SerialGS.cpp 

The file SerialGS.cpp provides access to the necessary libraries and also contains the initial version of the 
hea program function – the function main. The available program variant contains the declaration of variables 
and printout of the initial program message.  

Let us consider the variables, which are used in the main function  of the application. The first variable 
pMatrix is the matrix, which stores the values of the given domain nodes. The variable Size defines the matrix 
size (the matrix pMatrix is assumed to be square and its dimension is assumed to be Size×Size). The variable Eps 
is used to store the required solution accuracy. To store the number of the executed iterations of the Gauss-Seidel 
algorithm we will use the variable Iterations. 

  double* pMatrix;    // Matrix of the grid nodes 
  int     Size;       // Matrix size 
  double  Eps;        // Required accuracy 
  int     Iterations; // Iteration number 

It should be noted that in order to store the matrix pMatrix we should use a one-dimensional array, where 
the matrix is stored rowwise. Thus, the element, located at the intersection of the i-th row and the j-th matrix 
column in a one-dimensional array, has the index i*Size+j. 

The program code, which follows the declaration of variables, is the initial message output and waiting for 
pressing any button before the termination of the application execution: 

  printf ("Serial Gauss - Seidel algorithm\n"); 
  getch(); 

Now it is possible to make the first application run. Execute the command Rebuild Solution in the menu 
Build.  This command makes possible to compile the application. If the application is compiled successfully (in 
the lower part of the Visual Studio window there is the following message: "Rebuild All: 1 
succeeded, 0 failed, 0 skipped"), press the key F5 or execute the command Start Debugging of 
the menu Debug.  

Right after the code start the following message will appear in the command console:  
“Serial Gauss-Seidel algorithm ".  

In order to exit the program, press any key.  

 Task 2 – Input the Initial Data  

In order to set the initial data of the serial Gauss-Seidel algorithm for solving the Dirichlet problem, we will 
develop the function ProcessInitialization. This function is intended for inputting the grid size in the solution 
domain (the size of the matrix pMatrix) and the required accuracy Eps of solving the problem and for allocating 
the required memory. Thus, the function should have the following heading:  

// Function for memory allocation and initialization of grid nodes 
void ProcessInitialization (double* &pMatrix, int &Size, double &Eps); 

At the first step it is necessary to input the grid size in the problem domain (to set the value of the variable 
Size). Add the bold marked code to the function ProcessInitialization: 

// Function for memory allocation and initialization of grid nodes 
void ProcessInitialization (double* &pMatrix, int &Size, double &Eps) { 
  // Setting the matrix size 
  printf("\n Enter the grid size: "); 
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  scanf("%d", &Size); 
  printf("\n Chosen grid size = %d", Size); 
} 

The user can enter the grid size, which is read from the standard input stream stdin and than the value is 
stored in the integer variable Size. The value of the variable Size is further printed out (Figure 12.3).  

Add the call of the initialization function ProcessInitialization to the main s function after the initial 
message line: 

void main() { 
  double* pMatrix;    // Matrix of the grid nodes 
  int     Size;       // Matrix size 
..double  Eps;        // Required accuracy 
  int     Iterations; // Iteration number 
 
  printf ("Serial Gauss - Seidel algorithm\n"); 
 
  // Process initialization 
  ProcessInitialization(pMatrix, Size, Eps); 
  getch(); 
} 

Compile and run the application. Make sure that the value of the variable Size is set correctly. 

 
Figure 6.3. Setting the Grid Size  

As in case of previous labs, we will control the input correctness. Let us implement the check of the grid 
size and, if there is an error there (the set size of less than 3), we will continue to ask for the grid size until some 
accepted value is entered. In order to provide this behavior we will place the code, which inputs the grid size, to 
the loop:  

  // Setting the grid size 
  do { 
    printf("\n Enter the grid size of the initial objects: "); 
    scanf("%d", &Size); 
    printf("\n Chosen the grid size = %d", Size); 
    if (Size <= 2) 
      printf("\n Size of the grid must be greater than 2!\n");  
  } 
  while (Size <= 2); 

Compile and run the application again. Try to enter an unaccepted number as the grid size. Make sure that 
invalid situations are processed correctly.  

Let us implement now the input of the required accuracy value Eps. Add the following code to the the 
function ProcessInitialization: 

  // Setting the required accuracy 
  do { 
    printf("\n Enter the required accuracy: "); 
    scanf("%lf", &Eps); 
    printf("\n Chosen accuracy = %lf", Eps); 
    if (Eps <= 0) 
      printf("\n Accuracy must be greater than 0!\n");  
  } 
  while (Eps <= 0); 
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Compile and run the application. Make sure that the value of the variable Eps is set correctly. 

 Task 3 – Set the Initial Data  

The initialization function must provide also memory allocation for storing data (add the bold marked code 
to the function ProcessInitialization): 

// Function for memory allocation and initialization of grid nodes 
void ProcessInitialization (double* &pMatrix, int &Size) { 
... 
  // Setting the required accuracy 
  do { 
    <…> 
  } 
  while (Eps <= 0); 
 
  // Memory allocation  
  pMatrix = new double [Size*Size]; 
} 

It is necessary to set the values of all elements of the matrix pMatrix. To carry out these operations, we will 
develop one more function DummyDataInitialization. The hearding and the implementationtion of the function 
are given below: 

// Function for simple setting the grid node values 
void DummyDataInitialization (double* pMatrix, int Size) { 
  int i, j;  // Loop variables 
  // Setting the grid node values 
  for (i=0; i<Size; i++) { 
    for (j=0; j<Size; j++)  
      if ((i==0) || (i== Size-1) || (j==0) || (j==Size-1)) 
        pMatrix[i*Size+j] = 100; 
      else 
        pMatrix[i*Size+j] = 0; 
  } 
} 

As you can see from the given code, this function provides setting the values of the function u in the grid nodes. 
While the value 0 is set for all the inner grid nodes, the value 100 is set for all the boundary nodes (i.e. the 
function g for setting the values at the domain border is equal to g≡100). 

The function DummyDataInitialization must be called immediately after the allocation of the memory in 
the function ProcessInitialization: 

// Function for memory allocation and initialization of grid nodes  
void ProcessInitialization (double* &pMatrix, int &Size, double &Eps) { 
 
  // Memory allocation  
  <…> 
 
  // Setting the grid node values 
  DummyDataInitialization(pMatrix, Size); 
} 

Let us develop one more function, which will further help to control the initial data setting. This is the 
function of the formatted output of the matrix PrintMatrix. The pointer to the one-dimensional array, where the 
matrix is stored rowwise, and the matrix sizes both vertically (the number of rows RowCount) and horizontally 
(the number of columns RowCount) are given as arguments to the function PrintMatrix: 

// Function for formatted matrix output 
void PrintMatrix (double* pMatrix, int RowCount, int ColCount) { 
  int i, j; // Loop variables 
  for (i=0; i<RowCount; i++) { 
    for (j=0; j<ColCount; j++) 
      printf("%7.4f ", pMatrix[i*ColCount+j]); 
    printf("\n"); 
  } 
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} 
 

Let us add the call of the function to the main function: 

  // Process initialization 
  ProcessInitialization(pMatrix, Size, Eps); 
 
  // Matrix output 
  printf (“Initial Matrix: \n”); 
  PrintMatrix (pMatrix, Size, Size); 

Compile and run the application. Make sure that the data setting is performed according to the above-
described rules (See Figure 6.4). Run the application several times, set various initial values. 

 
Figure 6.4. The Result of the Program Execution after the Termination of Task 3 

 Task 4 –Terminate the Program Execution 

In this Task we should develop a function for correct program termination before the implementation of the 
Gauss-Seidel algorithm. For this purpose it is necessary to deallocate the memory, which has been allocated 
dynamically in the course of the program execution. Let us develop the corresponding function 
ProcessTermination. The memory was allocated for storing the initial matrix pMatrix. Consequently, this array 
must be given to the function ProcessTermination as argument: 

// Function for computational process termination 
void ProcessTermination(double* pMatrix) { 
  delete [] pMatrix; 
} 

The call of the function ProcessTermination must be executed before the termination of the function main: 

  // Process initialization 
  ProcessInitialization(pMatrix, Size, Eps); 
     
  // Matrix output 
  printf (“Initial Matrix: \n”); 
  PrintMatrix (pMatrix, Size, Size); 
 
  // Computational process termination 
  ProcessTermination(pMatrix); 

Compile and run the application. Make sure it is executed correctly. 

 Task 5 – Implement the Gauss-Seidel Algorithm  

Let us develop the main part of the computational program. In order to implement the Gauss-Seidel 
algorithm for solving the Dirichlet problem, we will develop the function ResultCalculation, which accepts the 
initial matrix pMatrix, the matrix size Size, the required accuracy of solving the problem Eps as input 
parameters. We will add the variable Iterations as an output parameter. In this variable the function will return 
the number of the executed iterations of the Gauss-Seidel algorithm until the required accuracy is achieved.  

In accordance with the algorithm described in Exercise 1, the code of the function must be as follows: 
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// Function for the Gauss-Seidel algoritm 
void ResultCalculation(double* pMatrix, int Size, double &Eps,  
  int &Iterations) { 
  int i, j;  // Loop variables   
  double dm, dmax,temp; 
  Iterations = 0;    
  do { 
    dmax = 0; 
    for (i = 1; i < Size - 1; i++) 
      for(j = 1; j < Size - 1; j++) { 
        temp = pMatrix[Size * i + j]; 
        pMatrix[Size * i + j] = 0.25 * (pMatrix[Size * i + j + 1] +  
                                        pMatrix[Size * i + j - 1] +  
                                        pMatrix[Size * (i + 1) + j] +  
                                        pMatrix[Size * (i - 1) + j]); 
        dm = fabs(pMatrix[Size * i + j] - temp); 
        if (dmax < dm) dmax = dm; 
      }     
      Iterations++; 
  } 
  while (dmax > Eps);   
} 

Let us call the function, which implements the Gauss-Seidel algorithm, from the main program. In order to 
control the correctness of the program execution, we will print out the matrix of values: 

  // Process initialization 
  ProcessInitialization(pMatrix, Size); 
     
  // Matrix and vector output 
  printf (“Initial Matrix: \n”); 
  PrintMatrix (pMatrix, Size, Size); 
 
  // Gauss-Seidel method 
  ResultCalculation(pMatrix, Size, Eps, Iterations); 
 
  // Printing the result 
  printf("\n Number of iterations: %d\n",Iterations); 
  printf (“\n Result matrix: \n”); 
  PrintMatrix (pMatrix, Size, Size); 
 
  // Computational process termination 
  ProcessTermination(pMatrix); 

Compile and run the application. Analyze the results of the Gauss-Seidel algorithm execution. Carry out 
several computational experiments changing the computation grid size. 

 
Figure 6.5. The Result of the Gauss-Seidel Algorithm Execution 



 Task 6 – Carry out the Computational Experiments  

In order to estimate the further speed up of the parallel program, it is necessary to carry out experiments on 
the computation of the execution time for the serial algorithm. It is reasonable to analyze the execution time of 
the algorithm for large enough computational grid sizes. 

To determine the time we will add the call of the functions, which allow us to find out the execution time, 
to the developed program. As previously we use the following function:  

time_t clock(void); 

Let us add the computation and output of the time spent for solving the Dirichlet problem to the program 
code. For this purpose we will clock in before and after the call of the function ResultCalculation: 

    // Gauss-Seidel method 
    start = clock(); 
    ResultCalculation(pMatrix, Size, Eps, Iterations); 
    finish = clock(); 
    duration = (finish-start)/double(CLOCKS_PER_SEC); 
 
    // Printing the time spent by the Gauss-Seidel method 
    printf("\n Time of execution: %f", duration); 

Compile and run the application. In order to carry out computational experiments with large computational 
grids, switch off the matrix result output (transform the corresponding code lines into comment). Carry out the 
computational experiments, and register the results in Table 6.1.  

Table 6.1. The Results of the Computational Experiments for the Gauss-Seidel Method 

Test Number Grid Size Number of Iterations Execution Time (sec) 
1 10   

2 100   
3 1000   
4 2000   
5 3000   
6 4000   

Let us estimate the computational complexity of the Gauss-Seidel algorithm analytically (see Section 12 
“Parallel methods of solving differential equations in partial derivatives” of the training materials). The 
execution time for problem solving may be generally estimated according to the expression 

2
1 kmNT = ,           (6.1) 

where  is the number of inner nodes for each coordinate of the domain ,  is the number of operations 
performed by the method for a grid node (m=6),  is the number of method iterations before the accuracy 
requirement is met, and τ is the execution time of the basic computational operation. 

N D m
k

Complete the table of comparison of the experiment execution time to the time obtained according to 
formula (6.1). In order to compute the execution time of the basic computational operation, we will use the 
following method: let us choose one of the experiments as a pivot (for instance, the experiment where the grid 
size is equal to 2000) and divide the execution time of this experiment by the number of the executed operations 
(the number of operations may be calculated according to the formula (6.1)). Thus, we will compute the 
execution time of the operation. Then we will use this value and compute the theoretical execution time for all 
the other experiments.   

Calculate the theoretical execution time of matrix multiplication. Write the results in the following table. 
Table 6.2. The Comparison of the Experimental and the Theoretical Gauss-Seidel Method Execution Time  

The Execution Time of Basic Computational Operation τ (sec): 
Test Number Matrix Size Execution Time (sec) Theoretical Time (sec) 

1 10   

2 100   
3 1000   
4 2000   
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5 3000   
6 4000   

 

 Task 3 – Develop the Parallel Gauss-Seidel Algorithm 

For the purpose of developing the parallel algorithm, it is necessary to choose the method for partitioning 
the processed data among the processors. Two different methods of data distribution are possible in case of 
developing the parallel methods of solving the Dirichlet problem. These are the one-dimensional (or block-
striped) scheme and two-dimensional (or chessboard block) computational grid partitioning.  

We will consider the block-striped scheme of the computation decomposition in detail later (see also 
Section 12 “Parallel methods of solving differential equations in partial derivatives” of the training materials). 

 Subtask Definition 

In case of block-striped partitioning the computational domain is divided into horizontal or vertical stripes 
(Figure 6.6a and 6.6b). The number of stripes is set by the number of processors. The stripe size is usually the 
same for all the processors. The horizontal boundary nodes (the first and the last rows) are included into the first 
and the last stripes correspondingly. The stripes for processing are distributed among the processors.  

The division of the rows and columns into stripes is performed in the majority of cases on the continuous 
(sequential) basis. This is the approach that we use in this lab. This approach involves presenting the matrix A for 
horizontal rowwise partitioning in the following way: 

pmkkjjikiaaaAAAAA jiiii
T

p k
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where a  = (a ,  a ,… a ),i i 1 i 2 i n  0≤  i<m,  is the i- th  row of  the matrix A (the row number m  is assumed to be 
divisible by the number of processes p without remainder, i.e. m = k ⋅p). 

The essential aspect of implementing the Gauss – Seidel method computations with data distribution of this 
type is that the boundary rows of the previous and the next grid stripes should be replicated on the processor, 
which performs processing of the stripe. The replicated stripe boundary rows are used only for calculations. The 
recalculation of these rows is performed in the stripes of the initial row location. Thus, boundary rows should be 
replicated prior to the beginning of each iteration of the grid method.  

 

(а) (б) 
 

Figure 6.6. Block-Striped Decomposition of the Grid Nodes among the Processors  

В качестве начального варианта рассмотрим предельный случай, когда количество процессоров 
совпадает с числом внутренних строк сетки, т.е. p=N. В такой ситуации полоса каждого процессора 
состоит из трех строк, из которых только одна является перевычисляемой, а две других строки 
дублируются с соседних процессов. Примем далее все вычисления, связанные с обработкой каждой из 
таких полос, в качестве базовой вычислительной подзадачи. 

 Analysis of Information Dependencies  

The parallel version of the Gauss - Seidel method in case of block-striped data distribution consists in 
simultaneous stripes processing on all the available processors according to the following scheme:  

// Gauss-Seidel method, block-striped data distribution 
// Calculations performed on each processor 
do { 
  // < exchanging the boundary stripe rows among the neighbors > 
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  // < stripe processing > 
  // < calculating the total comptuation error dmax >} 
 while ( dmax > eps ); // eps – the required accuracy of computations 
 

To make the following algorithm presentation more precise let us introduce the following notation: 
− ProcNum – the number of processor, which perform the described operations, 
− PrevProc, NextProc – the numbers of neighboring processors containing the previous and the 

following stripes, 
− NP – the number of processors, 
− M  – the number of rows in the stripe (the replicated boundary rows are not included),  
− N   – the number of inner nodes in a grid row (i.e. N+2 nodes in a row). 
To enumerate the stripe rows we will use the enumeration where rows 0 and M+1 are the boundary rows 

replicated from the neighboring stripes and own stripe rows of the processor are enumerated from 1 to M.  

 

 

Figure 6.7.  The Scheme of the Boundary Rows Transmission among the Neighboring 
Processors 

The procedure of boundary row exchange among the neighboring processors may be divided into two 
sequent operations. During the first operation each processor transmits its lowest boundary row to the following 
processor and receives an identical row from the previous processor (see Figure 6.7). The second transmission 
part is performed in the reverse order: the processors transmit their upper boundary rows to the previous 
neighbors and receive identical rows from the following neighboring processors.  

Carrying out such data transmissions may be represented in a general way as follows (for data 
transmissions we use a pseudo code close to MPI functions):  

// Transmission of the lower boundary row to the following processor and 
// receiving the transmitted row from the previous processor  
Sendrecv(u[M][*],N+2,NextProc,u[0][*],N+2,PrevProc); 

The implementation of such combined function Sendrecv is usually performed so as to provide both the 
correct execution on the boundary processors, when it is not necessary to perform one of the transmission 
operations, and the alternation of the transmission procedures on the processors in order to avoid deadlock 
situations. It should be also noted that the function Sendrecv executes usually all the necessary data transmission 
operations in parallel.  

In order to compute the total computational error for all the processors, you can use the cascade scheme. 
MPI provides the special function MPI_Allreduce for this purpose.  

The general computational scheme for each processor may be presented in the pseudo-code in the 
following way: 

// Gauss-Seidel method, block-striped data disrtibution 
// Calculations performed on each processor 
do { 
  // Exchanging the boundary stripe rows among the neighbors 
  Sendrecv(u[M][*],N+2,NextProc,u[0][*],N+2,PrevProc); 
  Sendrecv(u[1][*],N+2,PrevProc,u[M+1][*],N+2,NextProc); 
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  // < stripe processing with the error estimation dm > 
  // Computating the total computational error dmax 
  Allreduce(dm,dmax,MAX,0); 
} while ( dmax > eps ); // eps – the required accuracy 

 Scaling and Distributing the Subtasks among the Processors  

The number of the available processors p is, as a rule, considerably less than the number of the basic 
subtasks  ( ). A possible way to aggregate computations is to use the block-striped decomposition 
scheme of the matrix A. This approach corresponds to the aggregation of computations connected with updating 
the nodes of one or several grid rows (horizontal partitioning) or columns (vertical partitioning) of the matrix A 
within a basic computational subtask. These two types of partitioning are practically equal. Taking into account 
that the arrays are located rowwise for the algorithmic language C we will further consider only partitioning the 
matrix A into horizontal stripes.  

N Np <<

 Exercise 4 – Code the Parallel Gauss-Seidel Program for Solving  
the Dirichlet Problem 

In order to perform the tasks, you will have to develop the parallel Gauss-Seidel program for solving the 
Dirichlet problem. This Exercise is aimed at:  

• Getting additional skills at developing parallel programs, becoming familiar with variants of data 
decomposition, collective communication operations,  

• Developing the first version of the parallel program, which implements the Gauss-Seidel algorithm for 
solving the Dirichlet problem.  

As previously, the parallel program to be developed, will be composed of the following basic parts: 
• Initialization of the MPI program environment, 
• The main part of the program, where the necessary algorithm of solving the stated problem is 

implemented, and the data exchange among the processes executed in parallel is carried out, 
• Termination of MPI program. 

 

 Task 1 – Open the Project ParallelGaussSeidel 

Open the project ParallelGaussSeidel using the following steps: 
• Start the application Microsoft Visual Studio 2005, if it has not been started yet, 
• Execute the command Open→Project/ Solution in the menu File, 
• Choose the folder с:\MsLabs\ParallelGaussSeidel, in the dialog window Open Project, 
• Make double click on the file ParallelGaussSeidel.sln or select it and execute the command Open. 
After the project has been opened in the window Solution Explorer (Ctrl+Alt+L), make double click on the 

file ParallelGS.cpp, as it is shown in Figure 6.9. After that, the code, which has to be enhanced, will be opened 
in the workspace of the Visual Studio. 

 
Figure 6.8. Opening the File ParallelGS.cpp with the Use of the Solution Explorer 



The main function of the parallel program to be developed, which contains the declaration of the necessary 
variables, is located in the file ParallelGS.cpp. The following functions copied from the serial project are also 
located in the file ParallelGS.cpp: DummyDataInitialization, ResultCalculation, PrintMatrix (detailed 
information on the purpose of these functions is given in Exercise 2 of this lab). These functions may be also 
used in the parallel program. Besides, the drafts for the functions of the computation initialization 
(ProcessInitialization) and termination (ProcessTermination) are also located there. 

Compile and run the application using the Visual Studio. Make sure that the initial message: 
"Parallel Gauss – Seidel program”  

is output into the command console. 

 Task 2 –Initialize and Terminate the Parallel Program  

You should add the MPI header file to the program in order to use the MPI functions in your application. 
Add the bold marked line to the list of the libraries in the initial code of the parallel program: 

#include <stdlib.h> 
#include <stdio.h>  
#include <time.h> 
#include <mpi.h> 

Next you should initialize the MPI program environment, determine the number of available processe, the 
rank of the process in the communicator MPI_COMM_WORLD, and declare global variables for storing these 
values (ProcNum and ProcRank correspondingly). Add the following bold marked code: 

static int ProcNum = 0;    // Number of the available processes  
static int ProcRank = -1;  // Rank of the current process 
 
void main(int argc, char* argv[]) { 
  double* pMatrix;  // Matrix of the grid 
  int     Size;     // Matrix size 
  double  Eps;      // Requied accuracy 
  double  Start, Finish, Duration; 
 
  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 
  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 
 
  if(ProcRank == 0) 
    printf("Parallel Gauss - Seidel algorithm \n"); 
 
  MPI_Finalize(); 
}  

Compile the parallel application using Visual Studio (execute the command Rebuild Solution of the menu 
option Build). In order to run the parallel program you should start the program Сommand prompt, doing the 
following: 

1. Press the key Start, and the key Run, 
2. Type the name of the program cmd in the dialog window, which appears on the screen (Figure 6.9) 

 
Figure 6.9. Command Prompt Start 

In the command line go to the folder, which contains the developed program, which is being executed 
(Figure 6.10): 
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Figure 6.10. Setting the Folder, which Contains the Parallel Program 

Type the command (Figure 6.11) in order to run the program using 4 processes:  
mpiexec –n 4 ParallelGaussSeidel.exe  

 
Figure 6.11. Starting the Parallel Program 

Make sure that initial message  
"Parallel Gauss-Seidel algorithm "  

is output to the command console. 

 Task 3 – Input the Initial Data  

At the next stage of developing the parallel application it is necessary to input the grid size, allocate 
memory for data storage and set the initial values.  

The dialog with the user for inputting the grid size must be executed by only one process (let it be the 
process with the rank 0).  

As previously, the function ProcessInitialization is used to initialize the computations: 

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pMatrix, double* &pProcRows,  
  int &Size, int &RowNum, double &Eps); 

First it is necessary to input the grid size, i.e. to set the value of the variable Size. Let us implement the 
dialog with the user in order to input the grid size. As in case of the previous labs, we will check the correctness 
of the input value. Add the following bold marked code to the function ProcessInitialization: 

// Function for memory allocation and and data initialization 
void ProcessInitialization (double* &pMatrix, double* &pProcRows, 
  int &Size, int &RowNum, double &Eps) { 
  if (ProcRank == 0) { 
    do { 
      printf("\n Enter the grid size: "); 
      scanf("%d", &Size); 
      printf("\n Chosen grid size = %d", Size); 

14 



15 

      if (Size <= 2) { 
         printf("\n Grid size must be greater than 2! \n"); 
      } 
      if (Size < ProcNum) { 
        printf("\n The grid size must be greater than"  
               "the number of processes! \n "); 
      } 
      if ((Size-2)%ProcNum != 0) { 
        printf("\n Number of inner rows of the grid must be divisible by"  
          "the number of processes!  \n"); 
      } 
    } while ( (Size <= 2) || (Size < ProcNum) || ((Size-2)%ProcNum != 0)); 
    // Setting the required accuracy 
    do { 
      printf("\n Enter the required accuracy: "); 
      scanf("%lf", &Eps); 
      printf("\n Chosen accuracy = %lf", Eps); 
      if (Eps <= 0) 
        printf("\n Accuracy must be greater than 0!\n");  
    } while (Eps <= 0); 
  } 
} 

After the values of the variables Size and Eps have been defined correctly, it is necessary to broadcast these 
values to the other processes. For this purpose we should use the function of the broadcast MPI_Bcast. Add the 
following code to the program. Pay attention to the fact that the call of the function MPI_Bcast must be executed 
by all the processes: 

  if (ProcRank == 0) { 
    <…> 
  } 
  // Broadcasting the grid size 
  MPI_Bcast(&Size, 1, MPI_INT,    0, MPI_COMM_WORLD); 
  MPI_Bcast(&Eps,  1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
  // Calculating the number of grid rows stored on each process 
  RowNum = (Size-2)/ProcNum + 2; 

As it can be noted the number of the grid rows located on each process is also calculated in the added code. 
Add the call of the initialization function to the program main. Compile and run the application. Make sure 

that all the invalid situations are processed correctly. For this purpose, run the application several times setting 
various number of parallel processes (by means of the utility mpiexec) and various values of input data.  

As the next step we should allocate the memory and set the values of the grid nodes. Setting the initial data 
is performed by the process with the rank 0 only. Then, according to the scheme of parallel computations, 
described in Exercise 3, the grid nodes should be distributed among the processes in such a way that each 
process operates with a continuous sequence of grid rows (a horizontal stripe). It should be noted that the first 
version of the program being developed is oriented at the case when the number of the inner grid nodes is 
divisible by the number of processes, i.e. the grid stripes on all the processes contain the same number of grid 
rows. In order to store the stripe size we will use the variable RowNum. The horizontal stripe of grid rows on 
each process, will be stored in the variable pProcRows (pProcRows is the matrix, which contains RowNum rows 
and Size columns and which is stored rowwise).  

Let us declare the following variables in the main program functions: 

void main(int argc, char* argv[]) { 
  double* pMatrix;   // Matrix of the grid 
  int     Size;      // Grid size 
  double  Eps;       // Requied accuracy 
  double* pProcRows; // Stripe of the matrix on current process 
  int     RowNum;    // Number of rows in matrix stripe 
  double  Start, Finish, Duration; 

Let us allocate the memory for storing the data and initialize the grid node values on the root process (the 
process with the rank 0). We will use the function DummyDataInitialization in order to set the grid node values.  

Add the bold marked code to the function ProcessInitialization: 
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    <…> 
  // Calculating the number of grid rows stored on each process 
  RowNum = (Size-2)/ProcNum + 2; 
 
  // Memory allocation 
  pProcRows = new double [RowNum*Size];   
 
  // Setting the initial values of the grid nodes 
  if (ProcRank == 0) { 
    // Initial matrix exists only on the root process 
    pMatrix = new double [Size*Size]; 
    // Values of grid nodes are set only on the root process 
    DummyDataInitialization(pMatrix, Size); 
  } 

In order to control the correctness of the initial data input, it is possible to use the function PrintMatrix. 
After the call of the function ProcessInitialization in the main program function, add the call of the function 
PrintMatrix to print the matrix pMatrix on the root process. Compile and run the application. Make sure that the 
data is set correctly. 

 Task 4 –Terminate the Calculations 

In order to make the application complete at each stage of the development, we will develop the function 
for correct program termination. For this purpose it is necessary develop the function ProcessTermination in 
order to deallocate the memory for storing the matrix pMatrix and the matrix stripe pProcRows. All these arrays 
must be given to the function ProcessTermination as arguments: 

// Function for computational process termination 
void ProcessTermination (double* pMatrix, double* pProcRows) { 
  if (ProcRank == 0) 
    delete [] pMatrix; 
  delete [] pProcRows; 
} 

The call of the function ProcessTermination must be executed immediately before the termination of the 
parallel program: 

  // Process termination 
  ProcessTermination(pMatrix, pProcRows); 
  MPI_Finalize(); 
} 

Compile and run the application. Make sure that the application is executed correctly. 

 Task 5 – Distribute the Data among the Processes 

At this stage it is necessary to execute the data distribution in accordance with the parallel computation 
scheme, given in the previous Exercise; the grid matrix must be distributed among the processes in equal 
horizontal stripes. For this purpose let us develop the function DataDistribution. It should be provided that the 
following parameters must be given to the function as arguments:  the grid matrix pMatrix, the grid matrix stripe 
pProcRows, and the matrix and stripe sizes (the size of the matrix Size and the number of rows in the horizontal 
stripe RowNum): 

void DataDistribution(double* pMatrix, double* pProcRows, int Size,  
  int RowNum); 

Broadcasting the values of the grid matrix pMatrix may be provided with the help of the function 
MPI_Scatter. In addition the upper boundary row of the grid should be copied to the process 0, and the lower 
boundary row of the grid should be sent to the process with the rank ProcNum-1. 

// Function for distribution of the grid rows among the processes 
void DataDistribution(double* pMatrix, double* pProcRows, int Size,  
  int RowNum) { 
  MPI_Status status; 
  MPI_Scatter(pMatrix+Size, (RowNum-2)*Size, MPI_DOUBLE, pProcRows+Size,  
    (RowNum-2)*Size, MPI_DOUBLE, 0,MPI_COMM_WORLD);  
  // Copying the upper boundary row to the process 0 



17 

  if (ProcRank == 0 ){ 
    for(int i=0;i<Size;i++) 
      pProcRows[i]=pMatrix[i]; 
  } 
  // Sending the lower boundary row to the process ProcNum-1 
  if (ProcRank == 0)  
    MPI_Send(pMatrix + Size * (Size-1), Size, MPI_DOUBLE,  
      ProcNum - 1, 5, MPI_COMM_WORLD); 
  if (ProcRank == ProcNum - 1)  
    MPI_Recv(pProcRows + (RowNum - 1 ) * Size, 
      Size, MPI_DOUBLE, 0, 5, MPI_COMM_WORLD, &status); 
} 

The call of the function DataDistribution must be executed immediately after the call of the initialization 
function ProcessInitialization: 

  // Memory allocation and data initialization 
  ProcessInitialization(pMatrix, pProcRows, Size, RowNum); 
 
  // Data distribution among the processes 
  DataDistribution(pMatrix, pProcRows, Size, RowNum); 

Now let us check the correctness of the data distribution among the processes. For this purpose after the 
execution of the function DataDistribution we will print out the grid matrix, and then the matrix stripes, which 
are allocated on each of the processes. Let us add one more function to the application code. This function serves 
for checking the correctness of the data distribution. We will call the function TestDistribution. 

In order to provide the formatted output of the matrix we will use the method PrintMatrix: 

// Function for testing the data distribution 
void TestDistribution(double* pMatrix, double* pProcRows, int Size,  
  int RowNum) { 
  if (ProcRank == 0) { 
    printf("Initial Matrix: \n"); 
    PrintMatrix(pMatrix, Size, Size); 
  } 
  MPI_Barrier(MPI_COMM_WORLD); 
  for (int i=0; i<ProcNum; i++) { 
    if (ProcRank == i) { 
      printf("\nProcRank = %d \n", ProcRank); 
      fprintf(" Matrix Stripe:\n"); 
      PrintMatrix(pProcRows, RowNum, Size);       
    } 
    MPI_Barrier(MPI_COMM_WORLD); 
  } 
} 

Add the call of the function for testing the data distribution immediately after the function 
DataDistribution: 

  // Data distribution among the processes 
  DataDistribution(pMatrix, pProcRows, Size, RowNum); 
 
  // Distribution test 
  TestDistribution(pMatrix, pProcRows, Size, RowNum); 

Compile the application. If you find errors, correct them, comparing your code to the code given in this 
exircise. Run the application using three processes and set the grid size equal to 5. Make sure that the data 
distribution is performed correctly (Figure 6.12).  



 
Figure 6.12. The Grid Matrix Distribution in Case when the Application Is Run Using 

Three Processes and the Grid Size Is Equal to 5 

Следует отметить, что значения граничных строк в полосах процессов после начального 
распределения остались неинициализированными (кроме верхней граничной строки процесса 0 и нижней 
граничной строки процесса ProcNum-1). Как результат, при печати этих граничных строк могут быть 
выведены произвольные значения. 

 Task 6 – Exchange the Boundary Rows among the Neighboring Processes  

Let us implement the parallel Gauss-Seidel algorithm in the function ParallelResultCalculation. The grid 
matrix stripe pProcRows, the grid row size Size, the number of stripe rows RowNum, the given accuracy Eps,  
must be used as the function arguments. In addition the number of the executed iterations Iterations should be as 
as the output parameter of the function:   

// Function for the parallel Gauss-Seidel method 
ParallelResultCalculation(double *pProcRows, int Size, int RowNum,  
  double Eps, int &Iterations); 

The call of the function ParallelResultCalculation must be performed right after data distribution: 

  // Data distribution among the processes 
  DataDistribution(pMatrix, pProcRows, Size, RowNum);  
//  TestDistribution(pMatrix, pProcRows, Size, RowNum); 
 
  // Parallel Gauss-Seidel method 
  ParallelResultCalculation(pProcRows, Size, RowNum, Eps, Iterations); 
  TestDistribution(pMatrix, pProcRows, Size, RowNum); 

It should be noted that we may use the previously developed function of data printout TestDistribution in 
order to check the program execution.  

The first operation, which must be executed at each parallel Gauss-Seidel algorithm iteration consists in 
exchanging the boundary rows among the neighboring processes (see Exercise 3):  

// Function for the parallel Gauss-Seidel method 
void ParallelResultCalculation(double* pProcRows, int Size, int RowNum,  
  double Eps, int &Iterations) { 
  double ProcDelta, Delta; 
  Iterations=0; 

18 



19 

//  do { 
    Iterations++;     
    // Exchanging the boundary rows of the process stripe 
    ExchangeData(pProcRows, Size, RowNum);     
//  } while(Iteration < 2); 
} 

(it should be noted that the maximum possible number of the algorithm iterations is set to 2 in an effort to 
simplify the developed program testing. 

The matrix stripe pProcRows, the row size Size, and the number of stripe rows RowNum are the arguments 
of the function ExchangeData. The procedure of exchanging the boundary rows among the neighboring 
processes may be implemented with the use of the function MPI_Sendrecv: 

// Function for exchanging the boundary rows of the process stripe 
void ExchangeData(double* pProcRows, int Size, int RowNum) { 
  MPI_Status status; 
  int NextProcNum = (ProcRank == ProcNum-1)? MPI_PROC_NULL : ProcRank+1; 
  int PrevProcNum = (ProcRank == 0)        ? MPI_PROC_NULL : ProcRank-1; 
  // Send to NextProcNum and receive from PrevProcNum 
  MPI_Sendrecv(pProcRows+Size*(RowNum-2), Size, MPI_DOUBLE,NextProcNum, 4, 
    pProcRows, Size, MPI_DOUBLE, PrevProcNum, 4, MPI_COMM_WORLD, &status); 
  // Send to PrevProcNum and receive from NextProcNum 
  MPI_Sendrecv(pProcRows + Size, Size, MPI_DOUBLE, PrevProcNum, 5, 
    pProcRows + (RowNum-1)*Size, Size, MPI_DOUBLE, NextProcNum, 5, 
    MPI_COMM_WORLD, &status); 
} 

Compile the application. If you find errors, correct them, comparing your code to the code given in the 
exercise. Run the application using three processes and set the grid size equal to 5. Make sure that the boundary 
row exchange is performed correctly (Figure 6.13). 

 
Figure 6.13. The Grid Matrix Distribution After the Boundary Row Exchange  

(the Parallel Program uses three Processes and the Grid Size Is Equal to 5) 

Let us note that after the boundary row exchange the values of these rows are set and are printed correctly. 

 Task 7 – Implement the Parallel Algorithm Iterations  

Let us enhance the implementation of the function ParallelResultCalculation using the function 
IterationCalculation in order to execute the iterations of the parallel Gauss-Seidel algorithm for solving the 
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Dirichlet problem. For processing you should provide to the functions the grid matrix stripe pProcRows, the row 
size Size and the number of the stripe rows RowNum as input parameters:  

// Function for the execution of the Gauss-Seidel method iteration 
double IterationCalculation(double* pProcRows, int Size, int RowNum); 

In accordance with the algorithm described in Exercise 1, the program code of the function will look as 
follows: 

// Function for the execution of the Gauss-Seidel method iteration 
double IterationCalculation(double* pProcRows, int Size, int RowNum) { 
  int i, j;  // Loop variables   
  double dm, dmax, temp;   
  dmax = 0; 
  for (i = 1; i < RowNum-1; i++) 
    for(j = 1; j < Size-1; j++) { 
      temp = pProcRows[Size * i + j]; 
      pProcRows[Size * i + j] = 0.25 * (pProcRows[Size * i + j + 1] +  
                                      pProcRows[Size * i + j - 1] +  
                                      pProcRows[Size * (i + 1) + j] +  
                                      pProcRows[Size * (i - 1) + j]); 
      dm = fabs(pProcRows[Size * i + j] - temp); 
      if (dmax < dm) dmax = dm; 
  }  
  return dmax; 
} 

Add the call of the function IterationCalculation to the function ParallelResultCalculation: 

// Function for the parallel Gauss-Seidel method 
void ParallelResultCalculation(double* pProcRows, int Size, int RowNum,  
  double Eps, int &Iterations) { 
    <…> 
//  do { 
    Iterations++;     
    // Exchanging the boundary rows of the process stripe 
    ExchangeData(pProcRows, Size, RowNum); 
 
    // The Gauss-Seidel method iteration 
    ProcDelta = IterationCalculation(pProcRows, Size, RowNum);     
    TestDistribution(pMatrix, pProcRows, Size, RowNum); 
//  } while(Iteration < 2); 
} 

As it can be seen from the given program code, the call of the test function TestDistribution must be moved 
to the line after the call of the newly developed function IterationCalculation. 

Compile the application again. Carry out experiments and make sure that the computations are performed 
correctly. It should be noted that the obtained results may differ from the results of the serial algorithm and the 
only method of control is the manual check of the computation results (to simplify debugging it may be 
reasonable to transform the loop into the comment). 

If the application is run using three processes and the grid size is equal to 5, the computation results must 
coincide with the given ones (Figure 6.14). To continue the check up, turn the comments into the loop operator 
in the function ParallelResultCalculation (you may also change the constant in the loop condition and set the 
necessary number of the executed parallel Gauss-Seidel method iterations). 



 
Figure 6.14. The Calculation Results in Case when the Application Is Run Using three 

Processes and the Grid Size Is Equal to 5  

 Task 8 – Calculating the Maximum Result Deviation  

To implement the Gauss-Seidel method completely we have only to add the calculation of the maximum 
computation result deviation obtained at the algorithm iteration. The necessary changes of the function 
ParallelResultCalculation consist in the following (add the bold marked code): 

// Function for the parallel Gauss-Seidel method 
void ParallelResultCalculation(double* pProcRows, int Size, int RowNum,  
  double Eps, int &Iterations) { 
    <…> 
  do { 
    <…> 
    // Calculating the maximum value of the deviation 
    MPI_Allreduce(&ProcDelta, &Delta, 1, MPI_DOUBLE, MPI_MAX, 
      MPI_COMM_WORLD); 
  } while( Delta > Eps ); 
} 

Pay attention to the change of the loop condition of the Gauss-Seidel method iteration repetition cycle. To 
decrease the amount of the debugging output, delete the call of the function TestDistribution.  

Compile the application and check the correctness of the executed computations. Thus, for instance, if the 
parallel application is run using three processes and the grid size is equal to 5, the required accuracy is equal to 
0.1, the processes must obtain the results given in Figure 6.15.  
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Figure 6.15. The Results of the Parallel Gauss-Seidel Algorithm, in Case when the 

Application Is Run Using Three Processes and the Grid Size is Equal to 5 

 Task 9 – Gather the Results  

After the termination of the Gauss-Seidel method, it is necessary to gather the grid stripes located on 
different processes, on the root process (the process with the rank 0). Let us use the function MPI_Allgather, 
which composes a single array of the blocks located on different communicator processes.  

The function of gathering results ResultCollection will consist only of the  call of the function 
MPI_Allgather: 

// Function for gathering the calculation results 
void ResultCollection(double* pMatrix, double* pProcRows,int Size, 
  int RowNum) { 
  MPI_Gather(pProcRows+Size, (RowNum-2)*Size, MPI_DOUBLE, pMatrix+Size, 
    (RowNum-2)*Size, MPI_DOUBLE, 0,MPI_COMM_WORLD); 
} 

Add the call of the function ResultCollection to the function main: 

  // Parallel Gauss-Seidel method 
  ParallelResultCalculation(pProcRows, Size, RowNum, Eps, Iterations); 
  // TestDistribution(pMatrix, pProcRows, Size, RowNum); 
 
  // Gathering the calculation results 
  ResultCollection(pMatrix, pProcRows, Size, RowNum); 
  TestDistribution(pMatrix, pProcRows, Size, RowNum); 

Compile and run the application, Estimate the correctness of its execution. Use, as previously, the print 
function TestDistribution to check the correctness.  

 Task 10 – Test the Parallel Program Correctness  

After the function of the result collection is performed, it is necessary to check the correctness of the 
program execution. Let us develop the function TestResult for this purpose. It will compare the results of the 
serial and parallel programs. To execute the serial algorithm, it is possible to use the function 
SerialResultCalculation, developed in Exercise 2.  

To make the serial algorithm SerialResultCalculation operate the same data as the developed function 
ParallelResultCalculation,, it is necessary to produce a copy of the data using the function CopyData: 

// Function to copy the initial data 
void CopyData(double *pMatrix, int Size, double *pSerialMatrix) { 
  copy(pMatrix, pMatrix + Size, pSerialMatrix); 
} 
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Let us add the call of this function to the program code. It is necessary to declare the variable for storing the 
copy of the data and to make ready this copy: 

... 
  double* pMatrix;       // Matrix of the grid 
  double* pProcRows;     // Stripe of the matrix on the current process 
  double* pSerialMatrix; // Result of the serial method 
  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 
  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 
  <…> 
  // Data distribution among the processes 
  DataDistribution(pMatrix, pProcRows, Size,RowNum); 
 
  // Creating the copy of the initial data 
  if (ProcRank == 0) { 
    pMatrixCopy = new double[Size*Size]; 
    CopyData(pMatrix, Size, pSerialMatrix); 
  } 

Besides, it is necessary to deallocate the allocated memory for the serial algorithm: 

  // Process termination 
  if (ProcRank == 0) delete []pSerialMatrix; 
  ProcessTermination(pMatrix, pProcRows); 
  MPI_Finalize(); 

The function TestResult must have access to the matrices pMatrix and pCMatrix and should be executed 
only on the root process: 

// Function for testing the computation result 
void TestResult(double* pMatrix, double* pSerialMatrix, int Size,  
  double Eps) { 
  int equal = 0;  // =1, if the matrices are not equal 
  int Iter; 
 
  if (ProcRank == 0) { 
    SerialResultCalculation(pSerialMatrix, Size, Eps, Iter); 
    for (int i=0; i<Size*Size; i++) { 
      if (fabs(pSerialMatrix[i]-pMatrix[i]) >= Eps) { 
        equal = 1; break; 
      } 
    } 
    if (equal == 1)  
      printf("The results of the sequential and parallel programs"  
        "are NOT identical. Check your code."); 
    else 
      printf("The results of the sequential and parallel programs"  
        "are identical."); 
  } 
} 

The result of the function execution is printing a diagnostic message. You can test the result of the parallel 
program regardless of the initial data values with the help of this function.  

It should be noted that in the general case the results of the serial and the parallel variants of the Gauss-
Seidel methods may differ, as the sequences of processing the grid nodes may be different in these two variants. 
However, the deviation of the obtained calculation results must be within the limits of the required accuracy Eps 
(see Section 12 “Parallel methods of solving the differential equation in partial derivatives” of the training 
materials).  

Transform the call of the debugging function TestDistribution, which has been previously used for testing 
the correctness of the parallel program, into comments. Instead of the function DummyDataInitialization, which 
generates the initial data of the simple type, call the function RandomDataInitialization, which generates the 
initial data in the innerr grid nodes by means of the random data generator.  

// Function for setting the grid node values by a random generator 
void RandowmDataInitialization (double* pMatrix, int Size) { 
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  int i, j;  // Loop variables 
  srand(unsigned(clock())); 
  // Setting the grid node values 
  for (i=0; i<Size; i++) { 
    for (j=0; j<Size; j++)  
      if ((i==0) || (i== Size-1) || (j==0) || (j==Size-1)) 
        pMatrix[i*Size+j] = 100; 
      else 
        pMatrix[i*Size+j] = rand()/double(1000); 
  } 
} 

Compile and run the application. Set different grid sizes and the values of the required computation 
accuracy. Make sure that the application operates correctly.  

 Task 11 – Implement the Gauss-Seidel Algorithm for Any Given Grid 

The parallel program, which was developed in the course of executing the previous tasks, was 
implementeded for the case when the number of the inner grid nodes (Size-2) is divisible by the number of 
processors ProcNum. In this case the grid matrix is divided among the processes in equal stripes, and the number 
of rows RowNum processed by the process is the same for all the processes.  

Let us consider the general case when the number of the inner grid nodes (Size-2) is not divisible by the 
number of processes ProcNum. In this case the number of rows in the stripe on each process can be different: 
some processes will get ⎣ 2)2( ⎦ +− ProcNumSize , and the rest of them - ⎡ ⎤ 2)2( +− ProcNumSize  matrix rows 
(the operation  means rounding the value down to the nearest smaller integer number, the operation ⎣ ⎦ ⎡ ⎤  
means rounding the value up to the nearest greater integer number). 

Let us eliminate the processing of an invalid situation in the function ProcessInitialization. This situation 
occurs in the case when the number of inner grid nodes is not divisible by the number of processes. Now we will 
use the following distribution algorithm: we will allocate the rows to processes sequentially. It is necessary to 
determine how many rows the process with the rank 0 should operate, then the process with the rank 1 etc. The 
process with the rank 0 is allocated ⎣ 2)2( ⎦+− ProcNumSize  rows (the result of the operation ⎣  coincides 
with the result of the integer division). After the execution of this operation we have to distribute 

⎦

⎣ 2)2( −−− ProcNumSizeSize ⎦  rows among ProcNum-1 processes etc. As a result, each next process i is 
assigned the number of rows equal to the result of the integer division of the remaining row number RestRows by 
the remaining process numbers, i.e. ( )⎣ ⎦2)2( +−− iProcNumRestRows  rows. 

Let us change the program code for calculating the value of the variable RowNum in the function 
ProcessInitialization: 

// Function for allocating the memory and initialization of the grid nodes 
void ProcessInitialization (double* &pMatrix, double* &pProcRows,int &Size, 
  int &RowNum, double &Eps) { 
  int RestRows; // Number of the rows, that have't been distributed yet 
  <…> 
  // Define the number of the matrix rows stored on each process 
  RestRows = Size - 2; 
  for (i=0; i<ProcRank; i++)  
    RestRows = RestRows – RestRows / ( ProcNum – i ); 
  RowNum = RestRows/ ( ProcNum – ProcRank )+2; 
  <…> 
}   

In case when the grid matrix is distributed among process unequally, we cannot use the function 
MPI_Scatter for data distribution. Instead we should use a more general function MPI_Scatterv, which gives the 
opportunity to one of the processes to distribute the data among the communicator processes in continuous 
element blocks of unequal size.  

In order to call the function MPI_Scatterv it is necessary to define two auxiliary arrays for setting the offset 
and the size of the transmitted blocks. Let us add the necessary changes in the code of the function 
DataDistribution: 

// Function for distribution of the grid rows among the processes 
void DataDistribution(double* pMatrix, double* pProcRows, int RowNum, 
  int Size) { 
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  int *pSendNum; // Number of the elements sent to the process 
  int *pSendInd; // Index of the first data element sent to the process 
  int RestRows = Size; 
  // Alloc memory for temporary objects 
  pSendInd = new int [ProcNum]; 
  pSendNum = new int [ProcNum]; 
  // Define the disposition of the matrix rows for the current process 
  RowNum = ( Size – 2 ) / ProcNum + 2; 
  pSendNum[0] = RowNum * Size; 
  pSendInd[0] = 0; 
  for (int i=1; i < ProcNum; i++) { 
    RestRows = RestRows - RowNum + 2; 
    RowNum =  ( RestRows – 2 ) / ( ProcNum – i ) + 2; 
    pSendNum[i] = RowNum * Size; 
    pSendInd[i] = pSendInd[i-1] + pSendNum[i-1] - Size; 
  } 
  // Scatter the rows 
  MPI_Scatterv(pMatrix , pSendNum, pSendInd, MPI_DOUBLE, pProcRows,  
    pSendNum[ProcRank], MPI_DOUBLE, 0, MPI_COMM_WORLD); 
  delete []pSendInd; 
  delete []pSendNum;     
} 

Very much in the same way we will use the more general function MPI_Allgatherv for data gathering 
instead of the function MPI_Allgather. As in case of using MPI_Scatterv, the use of the function 
MPI_Allgatherv requires two additional arrays: 

// Function for gathering the result vector 
void ResultCollection(double *pMatrix, double* pProcResult, 
  int Size, int RowNum) { 
  int *pReceiveNum;  // Number of elements, that the current process sends 
  int *pReceiveInd;  // Index of the first element of the received block 
  int RestRows = Size; 
  int i;             // Loop variable 
 
  // Alloc memory for temporary objects 
  pReceiveNum = new int [ProcNum]; 
  pReceiveInd = new int [ProcNum]; 
 
  // Define the disposition of the result vector block of current processor 
  pReceiveInd[0] = 0; 
  RowNum = ( Size – 2 ) / ProcNum + 2; 
  pReceiveNum[0] = RowNum * Size; 
  for ( i=1; i < ProcNum; i++){ 
    RestRows = RestRows - RowNum + 2; 
    RowNum = ( RestRows – 2 ) / ( ProcNum – i ) + 2; 
    pReceiveNum[i] = RowNum * Size; 
    pReceiveInd[i] = pReceiveInd[i-1] + pReceiveNum[i-1] - Size; 
  } 
  //Gather the whole result vector on every processor 
  MP I_Allgatherv(pProcRows, pReceiveNum[ProcRank], MPI_DOUBLE, pMatrix,  
    pReceiveNum, pReceiveInd, MPI_DOUBLE, MPI_COMM_WORLD); 
 
  // Free the memory 
  delete [] pReceiveNum;  
  delete [] pReceiveInd; 
} 

Compile and run the application. Check the correctness of the Gauss-Seidel algorithm execution by means 
of the function TestDistribution. 
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 Task 12 – Carry out the Computational Experiments  

The main challenge in the development of the parallel algorithms for solving complicated computational 
problems is to provide the increase of speed up (in comparison with the serial algorithm) at the expense of using 
several processors. The execution time of the parallel algorithm should be less than the execution time of the 
serial algorithm.   

Let us determine the parallel algorithm execution time. For this purpose we will add clocking to the 
program code. As the parallel algorithm includes the stage of data distribution, the stage of the computation of 
the Gauss-Seidel iterations on each process and the stage of result gather, the clocking should start immediately 
before the call of the function DataDistribution, and stop right after the execution of the function 
ResultCollection: 

  // Memory allocation and data initialization 
  ProcessInitialization (pMatrix,pProcRows,Size,RowNum,Eps);  
 
  Start = MPI_Wtime(); 
  // Data istribution among the processes 
  DataDistribution(pMatrix, pProcRows, Size,RowNum); 
  
  // the Paralle Gauss-Seidel method   
  ParallelResultCalculation(pProcRows, Size,RowNum,Eps, Iterations); 
     
  //Gathering the calculation results 
  ResultCollection(pProcRows, pMatrix, Size, RowNum);   
  Finish = MPI_Wtime(); 
  Duration = Finish-Start; 
 
  <…> 

It is obvious that this way we will obtain the execution time of the root process. The execution time of the 
other processes may appear to be slightly different. But this difference must not be significant, as we paid special 
attention to the equal loading (balancing) of processes at the stage of the development of the parallel algorithm.  

Add the selected code to the main function. Compile and run the application. Carry out the computational 
experiments and register the results in Table 6.3. 

Тable 6.3. The Results of the Computational Experiments for the Parallel Gauss-Seidel Algorithm  

Parallel Algorithm 
2 processors 4 processors  8 processors  Grid size  Serial Algorithm 

Time Speed up Time Speed up Time Speed up 
10        

100        
1000        
2000        
3000        
4000        
5000        
6000        
7000        
8000        
9000        

10000        

The column “Serial Algorithm” is assigned for writing the execution times of the serial Gauss-Seidel 
algorithm measured in the course of testing the serial application in Exercise 2. In order to compute the speed up 
divide the execution time of the serial program by the parallel programm execution time. Give the results in the 
corresponding column of the table 6.3.  

В отличие от ранее выполненных лабораторных работ проведите самостоятельно теоретическую 
оценку времени выполнения параллельного алгоритма Гаусса-Зейделя. Полученные оценки внесите в 
таблицу 6.4 и сравните с реальным временем выполнения экспериментов. 
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Table 6.4. The Computation Speed Up Obtained for the Parallel Gauss-Seidel Algorithm  

2 processors 4 processors 8 processors Grid Size 
Model Experiment  Model Experiment  Model Experiment  

10       
100       

1000       
2000       
3000       
4000       
5000       
6000       
7000       
8000       
9000       

10000       

Discussions  

• Were the theoretical and the experiment execution time congruent? What might be the reason for 
incongruity? 

Exercises  

1. Study the parallel Gauss-Seidel algorithm for solving the Dirichlet problem, based on block-striped 
vertical matrix partitioning. Develop a program, which implements the algorithm. 

2. Study the parallel Gauss-Seidel algorithm for solving the Dirichlet problem, based on chessboard block 
matrix partitioning. Develop a program, which implements the algorithm. 

 Appendix 1. The Program Code of the Serial Gauss-Seidel Algorithm  
#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <time.h> 
#include <math.h> 
 
// Function for the Gauss-Seidel algoritm 
void ResultCalculation(double* pMatrix, int Size, double &Eps,  
  int &Iterations) { 
  double dm, dmax,temp; 
  int i, j;  // Loop variables   
  Iterations = 0;    
  do { 
    dmax = 0; 
    for (i = 1; i < Size - 1; i++) 
      for(j = 1; j < Size - 1; j++) { 
        temp = pMatrix[Size * i + j]; 
        pMatrix[Size * i + j] = 0.25 * (pMatrix[Size * i + j + 1] +  
                                        pMatrix[Size * i + j - 1] +  
                                        pMatrix[Size * (i + 1) + j] +  
                                        pMatrix[Size * (i - 1) + j]); 
        dm = fabs(pMatrix[Size * i + j] - temp); 
        if (dmax < dm) dmax = dm; 
      }     
      Iterations++; 
  } 
  while (dmax > Eps);   
} 
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// Function for computational process termination 
void ProcessTermination(double* pMatrix) { 
  delete [] pMatrix; 
} 
// Function for formatted matrix output 
void PrintMatrix (double* pMatrix, int RowCount, int ColCount) { 
  int i, j; // Loop variables 
  for (i=0; i<RowCount; i++) { 
    for (j=0; j<ColCount; j++) 
      printf("%7.4f ", pMatrix[i*ColCount+j]); 
    printf("\n"); 
  } 
} 
// Function for simple setting the grid node values 
void DummyDataInitialization (double* pMatrix, int Size) { 
  int i, j;  // Loop variables 
  double h = 1.0 / (Size - 1); 
  // Setting the grid node values 
  for (i=0; i<Size; i++) { 
    for (j=0; j<Size; j++)  
      if ((i==0) || (i== Size-1) || (j==0) || (j==Size-1)) 
        pMatrix[i*Size+j] = 100; 
      else 
        pMatrix[i*Size+j] = 0; 
  } 
} 
// Function for memory allocation and initialization of grid nodes 
void ProcessInitialization (double* &pMatrix, int &Size, double &Eps) { 
  // Setting the grid size 
  do { 
    printf("\nEnter the grid size: "); 
    scanf("%d", &Size); 
    printf("\nChosen grid size = %d", Size); 
    if (Size <= 2) 
      printf("\nSize of grid must be greater than 2!\n");  
  } while (Size <= 2); 
  // Setting the required accuracy 
  do { 
    printf("\nEnter the required accuracy: "); 
    scanf("%lf", &Eps); 
    printf("\nChosen accuracy = %lf", Eps); 
    if (Eps <= 2) 
      printf("\nAccuracy must be greater than 0!\n");  
  }   while (Eps <= 0); 
 
  // Memory allocation  
  pMatrix = new double [Size*Size]; 
 
  // Setting the grid node values 
  DummyDataInitialization(pMatrix, Size); 
} 
 
void main() { 
  double* pMatrix;    // Matrix of the grid nodes 
  int     Size;       // Matrix size 
  double  Eps;        // Required accuracy 
  int     Iterations; // Iteration number   
   
  printf ("Serial Gauss - Seidel algorithm\n"); 
 
  // Process initialization 
  ProcessInitialization(pMatrix, Size, Eps); 
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  // Matrix output 
  printf ("Initial Matrix: \n"); 
  PrintMatrix (pMatrix, Size, Size); 
 
  // The Gauss-Seidel method 
  ResultCalculation(pMatrix, Size, Eps, Iterations); 
 
  // Printing the result 
  printf("\n Number of iterations: %d\n",Iterations); 
  printf ("\n Result matrix: \n"); 
  PrintMatrix (pMatrix, Size, Size); 
  getch();  
 
  // Computational process termination 
  ProcessTermination(pMatrix); 
} 

 Appendix 2 – The Program Code of the Parallel Gauss-Seidel Algorithm  
#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <time.h> 
#include <math.h> 
#include <mpi.h> 
#include <algorithm.h> 
 
 
static int ProcNum = 0;   // Number of available processes  
static int ProcRank = -1; // Rank of current process 
 
// Function for distribution of the grid rows among the processes 
void DataDistribution(double* pMatrix, double* pProcRows, int RowNum, 
  int Size) { 
  int *pSendNum; // Number of elements sent to the process 
  int *pSendInd; // Index of the first data element sent to the process 
  int RestRows=Size; 
  // Alloc memory for temporary objects 
  pSendInd = new int [ProcNum]; 
  pSendNum = new int [ProcNum]; 
  // Define the disposition of the matrix rows for current process 
  RowNum = (Size-2)/ProcNum+2; 
  pSendNum[0] = RowNum*Size; 
  pSendInd[0] = 0; 
  for (int i=1; i<ProcNum; i++) { 
    RestRows = RestRows - RowNum + 2; 
    RowNum = (RestRows-2)/(ProcNum-i)+2; 
    pSendNum[i] = (RowNum)*Size; 
    pSendInd[i] = pSendInd[i-1]+pSendNum[i-1]-Size;       
  } 
  // Scatter the rows 
  MPI_Scatterv(pMatrix , pSendNum, pSendInd, MPI_DOUBLE, pProcRows,  
    pSendNum[ProcRank], MPI_DOUBLE, 0, MPI_COMM_WORLD); 
  delete []pSendInd; 
  delete []pSendNum;     
} 
 
// Function for computational process termination 
void ProcessTermination (double* pMatrix, double* pProcRows) { 
  if (ProcRank == 0) 
    delete [] pMatrix; 
  delete [] pProcRows; 
} 
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// Function for formatted matrix output 
void PrintMatrix(double *pMatrix, int RowCount, int ColCount){ 
  int i,j; // Loop variables 
  for(int i=0; i < RowCount; i++) { 
    for(j=0; j < ColCount; j++) 
      printf("%7.4f ", pMatrix[i*ColCount+j]); 
    printf("\n"); 
  } 
} 
// Function for the execution of the Gauss-Seidel method iteration 
double IterationCalculation(double* pProcRows, int Size, int RowNum) { 
  int i, j;  // Loop variables   
  double dm, dmax,temp;   
  dmax = 0; 
  for (i = 1; i < RowNum-1; i++) 
    for(j = 1; j < Size-1; j++) { 
      temp = pProcRows[Size * i + j]; 
      pProcRows[Size * i + j] = 0.25 * (pProcRows[Size * i + j + 1] +  
                                      pProcRows[Size * i + j - 1] +  
                                      pProcRows[Size * (i + 1) + j] +  
                                      pProcRows[Size * (i - 1) + j]); 
      dm = fabs(pProcRows[Size * i + j] - temp); 
      if (dmax < dm) dmax = dm; 
  }  
  return dmax; 
} 
 
// Function for testing the data distribution 
void TestDistribution(double* pMatrix, double* pProcRows, int Size,  
  int RowNum) { 
  if (ProcRank == 0) { 
    printf("Initial Matrix: \n"); 
    PrintMatrix(pMatrix, Size, Size); 
  } 
  MPI_Barrier(MPI_COMM_WORLD); 
  for (int i=0; i<ProcNum; i++) { 
    if (ProcRank == i) { 
      printf("\nProcRank = %d \n", ProcRank); 
//      fprintf(" Matrix Stripe:\n"); 
      PrintMatrix(pProcRows, RowNum, Size);       
    } 
    MPI_Barrier(MPI_COMM_WORLD); 
  } 
} 
 
// Function for simple setting the grid node values 
void DummyDataInitialization (double* pMatrix, int Size) { 
  int i, j;  // Loop variables 
  double h = 1.0 / (Size - 1); 
  // Setting the grid node values 
  for (i=0; i<Size; i++) { 
    for (j=0; j<Size; j++)  
      if ((i==0) || (i== Size-1) || (j==0) || (j==Size-1)) 
        pMatrix[i*Size+j] = 100; 
      else 
        pMatrix[i*Size+j] = 0; 
  } 
} 
 
// Function for memory allocation and initialization of grid nodes 
void ProcessInitialization (double* &pMatrix, double* &pProcRows,int &Size, 
  int &RowNum, double &Eps) { 
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  int RestRows; // Number of rows, that haven’t been distributed yet   
  // Setting the grid size 
  if (ProcRank == 0) { 
    do { 
      printf("\nEnter the grid size: "); 
      scanf("%d", &Size); 
      if (Size <= 2) { 
         printf("\n Size of grid must be greater than 2! \n"); 
      } 
      if (Size < ProcNum) { 
        printf("Size of grid must be greater than" 
               "the number of processes! \n "); 
      } 
    } 
    while ( (Size <= 2) || (Size < ProcNum)); 
 
    // Setting the required accuracy 
    do { 
      printf("\nEnter the required accuracy: "); 
      scanf("%lf", &Eps); 
      printf("\nChosen accuracy = %lf", Eps); 
      if (Eps <= 0) 
        printf("\nAccuracy must be greater than 0!\n");  
    } 
    while (Eps <= 0); 
  } 
  MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD); 
  MPI_Bcast(&Eps, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 
  // Define the number of matrix rows stored on each process 
  RestRows = Size; 
  for (i=0; i<ProcRank; i++)  
    RestRows = RestRows-RestRows/(ProcNum-i); 
  RowNum = (RestRows-2)/(ProcNum-ProcRank)+2 
 
  // Memory allocation 
  pProcRows = new double [RowNum*Size];  
  // Define the values of initial objects’ elements 
  if (ProcRank == 0) { 
    // Initial matrix exists only on the pivot process 
    pMatrix = new double [Size*Size]; 
    // Values of elements are defined only on the pivot process 
    DummyDataInitialization(pMatrix, Size); 
  } 
} 
// Function for exchanging the boundary rows of the process stripes 
void ExchangeData(double* pProcRows, int Size, int RowNum) { 
  MPI_Status status; 
  int NextProcNum = (ProcRank == ProcNum-1)? MPI_PROC_NULL : ProcRank + 1; 
  int PrevProcNum    = (ProcRank == 0)? MPI_PROC_NULL : ProcRank - 1; 
  // Send to NextProcNum and receive from PrevProcNum 
  MPI_Sendrecv(pProcRows + Size * (RowNum - 2),Size, MPI_DOUBLE, 
    NextProcNum, 4, pProcRows, Size, MPI_DOUBLE, PrevProcNum, 4, 
    MPI_COMM_WORLD, &status); 
  // Send to PrevProcNum and receive from NextProcNum  
  MPI_Sendrecv(pProcRows + Size, Size, MPI_DOUBLE, PrevProcNum, 5, 
    pProcRows + (RowNum - 1) * Size, Size,MPI_DOUBLE, NextProcNum, 5, 
    MPI_COMM_WORLD, &status);     
} 
 
// Function for the parallel Gauss - Seidel method 
void ParallelResultCalculation (double *pProcRows, int Size, int RowNum, 
  double Eps, int &Iterations) { 
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  double ProcDelta,Delta; 
  Iterations=0; 
  do { 
    Iterations++; 
    // Exchanging the boundary rows of the process stripe 
    ExchangeData(pProcRows, Size,RowNum); 
 
    // The Gauss-Seidel method iteration 
    ProcDelta = IterationCalculation(pProcRows, Size, RowNum); 
 
    // Calculating the maximum value of the deviation 
    MPI_Allreduce(&ProcDelta, &Delta, 1,MPI_DOUBLE, MPI_MAX, 
      MPI_COMM_WORLD); 
  } while ( Delta > Eps); 
} 
// Function for gathering the result vector 
void ResultCollection(double *pMatrix, double* pProcResult, int Size, 
  int RowNum) { 
  int *pReceiveNum;  // Number of elements, that current process sends 
  int *pReceiveInd;  // Index of the first element of the received block 
  int RestRows = Size; 
  int i;             // Loop variable 
 
  // Alloc memory for temporary objects 
  pReceiveNum = new int [ProcNum]; 
  pReceiveInd = new int [ProcNum]; 
 
  // Define the disposition of the result vector block of current processor 
  pReceiveInd[0] = 0; 
  RowNum = (Size-2)/ProcNum+2; 
  pReceiveNum[0] = RowNum*Size; 
  for ( i=1; i < ProcNum; i++){ 
    RestRows = RestRows - RowNum + 1; 
    RowNum = (RestRows-2)/(ProcNum-i)+2; 
    pReceiveNum[i] = RowNum*Size; 
    pReceiveInd[i] = pReceiveInd[i-1]+pReceiveNum[i-1]-Size;     
  } 
 
  // Gather the whole result vector on every processor 
  MPI_Allgatherv(pProcRows, pReceiveNum[ProcRank], MPI_DOUBLE, pMatrix,  
    pReceiveNum, pReceiveInd, MPI_DOUBLE, MPI_COMM_WORLD); 
 
  // Free the memory 
  delete [] pReceiveNum;  
  delete [] pReceiveInd; 
} 
 
// Function for the serial Gauss – Seidel method 
void SerialResultCalculation(double *pMatrixCopy, int Size, double Eps, 
  int &Iter){ 
  int i, j;  // Loop variables   
  double dm, dmax,temp; 
  Iter = 0;    
  do { 
    dmax = 0; 
    for (i = 1; i < Size - 1; i++) 
      for(j = 1; j < Size - 1; j++) { 
        temp = pMatrixCopy[Size * i + j]; 
        pMatrixCopy[Size * i + j] = 0.25 * (pMatrixCopy[Size * i + j + 1] +  
                                        pMatrixCopy[Size * i + j - 1] +  
                                        pMatrixCopy[Size * (i + 1) + j] +  
                                        pMatrixCopy[Size * (i - 1) + j]); 
        dm = fabs(pMatrixCopy[Size * i + j] - temp); 



33 

        if (dmax < dm) dmax = dm; 
      }     
      Iter++; 
  } 
  while (dmax > Eps);   
 
} 
// Function to copy the initial data 
void CopyData(double *pMatrix, int Size, double *pSerialMatrix) { 
  copy(pMatrix, pMatrix + Size, pSerialMatrix); 
} 
 
// Function for testing the computation result 
void TestResult(double* pMatrix, double* pSerialMatrix, int Size,  
  double Eps) { 
  int equal = 0; // =1, if the matrices are not equal   
  int Iter; 
 
  if (ProcRank == 0) { 
    SerialResultCalculation(pSerialMatrix, Size, Eps, Iter); 
    for (int i=0; i<Size*Size; i++) { 
      if (fabs(pSerialMatrix[i]-pMatrix[i]) >= Eps) 
        equal = 1;break; 
    } 
    if (equal == 1)  
      printf("The results of serial and parallel algorithms" 
             "are NOT identical. Check your code."); 
    else 
      printf("The results of serial and parallel algorithms" 
             "are identical.");    
  } 
} 
 
// Function for setting the grid node values by a random generator 
void RandowmDataInitialization (double* pMatrix, int Size) { 
  int i, j;  // Loop variables 
  srand(unsigned(clock())); 
  // Setting the grid node values 
  for (i=0; i<Size; i++) { 
    for (j=0; j<Size; j++)  
      if ((i==0) || (i== Size-1) || (j==0) || (j==Size-1)) 
        pMatrix[i*Size+j] = 100; 
      else 
        pMatrix[i*Size+j] = rand()/double(1000); 
  } 
} 
 
void main(int argc, char* argv[]) { 
  double* pMatrix;       // Matrix of the grid nodes 
  double* pProcRows;     // Stripe of the matrix on current process 
  double* pSerialMatrix; // Result of the serial method 
  int     Size;          // Matrix size 
  int     RowNum;        // Number of rows in matrix stripe 
  double  Eps;           // Required accuracy 
  int     Iterations;    // Iteration number  
  double currDelta, delta; 
 
  setvbuf(stdout, 0, _IONBF, 0); 
  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 
  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 
 
  if(ProcRank == 0) { 
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    printf("Parallel Gauss - Seidel algorithm \n"); 
    fflush(stdout); 
  } 
  // Process initialization 
  ProcessInitialization (pMatrix,pProcRows,Size,RowNum,Eps); 
 
  // Creating the copy of the initial data 
  if (ProcRank == 0) { 
    pSerialMatrix = new double[Size*Size]; 
    CopyData(pMatrix, Size, pSerialMatrix); 
  } 
 
  // Data distribution among the processes 
  DataDistribution(pMatrix, pProcRows, Size,RowNum); 
  
  // Paralle Gauss-Seidel method   
  ParallelResultCalculation(pProcRows, Size,RowNum,Eps, Iterations); 
  //TestDistribution(pMatrix, pProcRows, Size,RowNum); 
   
  // Gathering the calculation results 
  ResultCollection(pProcRows, pMatrix, Size, RowNum);   
  TestDistribution(pMatrix, pProcRows, Size,RowNum); 
 
  // Printing  the result 
  printf("\n Iter %d \n", Iterations); 
  printf("\nResult matrix: \n"); 
  if (ProcRank==0) { 
    //TestResult(pMatrix,Size,pMatrixCopy,Eps); 
    PrintMatrix(pMatrix,Size,Size); 
  } 
 
  // Process termination 
  if (ProcRank == 0) delete []pSerialMatrix; 
  ProcessTermination(pMatrix, pProcRows); 
  MPI_Finalize();   
} 
 


	Learning Lab 6: Parallel Algorithms of Solving Differential 
	Lab Objective
	Exercise 1 – Stating the Dirichlet Problem
	Exercise 2 – Code the Serial Gauss-Seidel Program for Solvin
	Task 1 – Open the Project SerialGaussSeidel
	Task 2 – Input the Initial Data
	Task 3 – Set the Initial Data
	Task 4 –Terminate the Program Execution
	Task 5 – Implement the Gauss-Seidel Algorithm
	Task 6 – Carry out the Computational Experiments

	Task 3 – Develop the Parallel Gauss-Seidel Algorithm
	Subtask Definition
	Analysis of Information Dependencies
	Scaling and Distributing the Subtasks among the Processors

	Exercise 4 – Code the Parallel Gauss-Seidel Program for Solv
	Task 1 – Open the Project ParallelGaussSeidel
	Task 2 –Initialize and Terminate the Parallel Program
	Task 3 – Input the Initial Data
	Task 4 –Terminate the Calculations
	Task 5 – Distribute the Data among the Processes
	Task 6 – Exchange the Boundary Rows among the Neighboring Pr
	Task 7 – Implement the Parallel Algorithm Iterations
	Task 8 – Calculating the Maximum Result Deviation
	Task 9 – Gather the Results
	Task 10 – Test the Parallel Program Correctness
	Task 11 – Implement the Gauss-Seidel Algorithm for Any Given
	Task 12 – Carry out the Computational Experiments

	Discussions
	Exercises
	Appendix 1. The Program Code of the Serial Gauss-Seidel Algo
	Appendix 2 – The Program Code of the Parallel Gauss-Seidel A


